
COLIVE: AN EDGE-ASSISTED ONLINE LEARNING FRAMEWORK FOR VIEWPORT
PREDICTION IN 360◦ LIVE STREAMING

Mu Wang∗, Shuai Peng†, Xingyan Chen‡, Yu Zhao‡, Mingwei Xu∗ and Changqiao Xu†

∗Tsinghua University, Beijing, China
‡Southwestern University of Finance and Economics, Chengdu, China
†Beijing University of Posts and Telecommunications, Beijing, China

∗muwang@mail.tsinghua.edu.cn, xmw@cernet.edu.cn
‡{xychen, zhaoyu}@swufe.edu.cn, †{pengshuai, cqxu}@bupt.edu.cn

ABSTRACT

The ever-increasing demand for bandwidth resources when

delivering premium quality 360◦ video challenges the current

network capacity. To alleviate such bandwidth pressure, it

is imperative to predict the viewport via observing the con-

tent visual feature and historical viewing behaviors, which

thereby allows the system to concentrate the limited resource

on viewer’s region of interest in 360◦ content. However, en-

abling accurate viewport prediction for 360◦ live streaming is

non-trivial given the time-sensitive of live content and short-

age of pre-knowledge on the visual features and viewing be-

haviors. In this paper, we propose CoLive, an edge-assisted

online viewport prediction framework. CoLive incorporates

edge computing to offload the prediction model training from

viewers and migrates the saliency feature detection to the

server side for reducing the processing delay. Viewers can

also collaboratively train a central predicting model via shar-

ing their loss gradients. This central model, together with the

saliency feature detection, further prompts accuracy predic-

tion and learning acceleration, especially for new incoming

viewers. A series of experiments on the public 360◦ video

dataset show how our solution achieves better performance

compared with state-of-the-art solutions.

Index Terms— live 360◦ video, viewport prediction, on-

line learning, edge computing

1. INTRODUCTION

With the provision of immersive view and rich interactivity,

360◦ video streaming (a.k.a immersive panoramic video) [1]

has been considered as a revolutionary technology for the cur-

rent content market. In particular, the fast development of

wireless communication technologies and widespread head-

mounted devices (HMDs) offer a solid foundation for the

360◦ live streaming services [2, 3], which simultaneously

records and streams panoramic views of ongoing events. This

This work was supported by China postdoctoral science foundation un-

der Grant 62101301. The corresponding author is Xingyan Chen.

emerging technology is fostering various applications such as

VR streaming, meta-universe, etc, which gain tremendous at-

tention from both academia and industry. The rapid commer-

cialization of 360◦ live streaming also raises the demand for

providing high-quality 360◦ content to end-users. However,

supporting 360◦ live streaming with such high quality by cur-

rent network infrastructure is nontrivial. 360◦ video content

can be 24K 1 resolution and requires more than 1.0Gbps band-

width, which is almost ten times of current worldwide average

bandwidth 2. Based on the fact that users’ viewport only cov-

ers a small portion of the 360◦ video content[4], a promising

trend to tackle the bandwidth shortage issue is to apply the

adaptive streaming that only fetches the high-resolution con-

tent within the viewer’s viewport region. Due to the viewport

location varies with the change of viewer’s region of interest,

this technology’s performance heavily relies on the accuracy

of viewport predictions.

Numerous efforts [5, 6, 7] have been made to solve the

viewport prediction problems in 360◦ video and achieve ex-

cellent results by both considering the content visual fea-

ture and viewer behaviors. For instance, in [8], Hou et al.
leverages a two-layer LSTM network to predict the view-

port movement. By further taking the visual feature into ac-

count, Wu et al. [7] applies a spherical CNN to predict the

future viewport from long-term perspective. In [5, 6], pre-

dicting models are fed with both the saliency map and view-

port moving traces, by the fact that the visual attention from

the saliency maps potentially improves the prediction accu-

racy. These methods assume that enough content and view-

ing traces are available for enhancing the learning model per-

formance. However, such assumption is untenable in live

streaming given the video is generated on the fly and first time

watched by the viewers.

Regression-based methods such as [9, 10] can be applied

1https://www.huawei.com/en/technology-insights/industry-

insights/outlook/mobile-broadband/xlabs/insights-whitepapers/cloud-vr-

ar-white-paper
2https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ul
tim

ed
ia

 a
nd

 E
xp

o
(IC

M
E)

 |
 9

78
-1

-6
65

4-
85

63
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
M

E5
29

20
.2

02
2.

98
59

96
3

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on February 13,2023 at 15:59:27 UTC from IEEE Xplore. Restrictions apply.

for 360◦ live streaming by real-time fitting the regression

model according to the fresh data of viewing trajectories.

Such solutions well performs when the viewport movement

pattern can be relatively static for a while. In contrast, the fre-

quent change of the movement pattern in real world caused by

the dynamic of the viewer’s interested region may impair the

accuracy of the viewport prediction. Several works attempt to

apply online learning to capture the saliency feature of video

streaming. For example, Xu et al.[11] uses a deep reinforce-

ment learning method with both online and offline methods

to predict the future viewport. LiveDeep [12] uses convolu-

tion neural networks (CNN) to recognize the visual feature

and long short-term memory (LSTM) predicts the viewport

movement based on viewer trajectories and content saliency

features. Although these solutions are applicable to 360◦ live

streaming, several issues are yet to be solved:

Firstly, current solutions mainly rely on the viewers to

train the saliency feature detection model and the viewport

prediction model. An online learning requires extra compu-

tation overheads that may overrun the viewers’ devices with

limited capacities [13]. Besides, the saliency map can be only

detected when the corresponding video content is generated,

which may introduce an extra delay to the live streaming.

Secondly, 360◦ live streaming content is revealed to view-

ers for the first time which limits the prior knowledge on the

user behavior. Training the prediction model with insufficient

information about user behaviors may affect the prediction ac-

curacy. Besides, live streaming viewers watch the live chan-

nel asynchronously. The new viewers need to train their own

model from the beginning, which is time-consuming and may

degrade their viewing experience.

Thirdly, viewport prediction can be considered as a

spatial-temporal sequence forecasting problem, which moti-

vates most current solutions [5, 6, 12] to apply the LSTM to

predict the users’ viewport locations. However, it is difficult

for the original LSTM model to capture the spatial and tempo-

ral correlations between the input sequences simultaneously

since the network is fully connected.

In this paper, we comprehensively tackle the above chal-

lenges by proposing a novel edge-assist online learning

framework CoLive. The proposed framework avoids the com-

putation burden of viewers’ devices and the saliency detection

latency discussed in the first challenge by offloading the pre-

diction model to the edge server and embedding the saliency

feature detection into media servers. Because of the existence

of similar viewing behaviors across the viewers, CoLive tack-

les the second challenge by introducing a collaborative on-

line learning-based prediction framework, in which viewers

collaboratively refine their predicting models by uploading

the local loss gradients to the central model. For the third

challenge, each viewer in CoLive is equipped with a hybrid

learning model based on convolutional LSTM (ConvLSTM)

[14] for recognizing both the spatial and temporal variations

of the input sequence of visual feature and viewport trajecto-

ries. Specifically, contributions of this paper are multi-folded:

• The edge-assisted learning framework for 360◦ live

streaming viewport prediction that migrates the

saliency detection to the server side and trains the pre-

diction models via edge computing.

• A ConvLSTM-based predicting model at edge side that

can capture the spatial and temporal relationships be-

tween the adjacent frames, in terms of the visual feature

and viewport location.

• A throughout evaluation for CoLive on the performance

of saliency detection, prediction and bandwidth saving,

compared with several state of art solutions.

2. THE FRAMEWORK OF COLIVE

CoLive aims to timely predict the future viewport locations of

viewers watching 360◦ live video. For this purpose, CoLive
mainly consists of two components: saliency feature detec-

tion and viewport prediction. To accommodate the real-time

content generate feature of live streaming, CoLive applies the

online learning that repeatedly updated the model parameters

according to the viewer feedback of each video chunk.

Fig. 1 shows the framework of CoLive: 1) The me-

dia server applies CNN-based network to output the saliency

feature map and deliver this map with corresponding video

segment to the edge server; 2) The edge server applies a

ConvLSTM-based model for each viewer to predict the view-

port locations of future video chunk according to the his-

torical viewport trajectories and sequential saliency maps,

which updates model parameters after viewer watch the video

chunk; 3) The parametric gradients of viewers’ model are in-

tegrated to train a central model, which can prompt others

prediction performance and help the new incoming viewers

to predict their viewport.

3. COLIVE DETAILS

In this section, we propose the detailed design of CoLive, in-

cluding the methodologies of saliency feature detection and

viewport prediction in CoLive.

3.1. 360◦ Video Saliency Feature Dection in CoLive

CoLive relies on the saliency feature of the video that in-

cludes the visual attention of viewers to predict the dynamic

viewport. Different from the existing works that integrate the

saliency detection model with predicting model as in [5, 8],

we separate the saliency feature detection from viewport pre-

diction and deploy the saliency detection model at server-side

by the following reasons: 1) The viewer side is the destina-

tion of live streaming content. Training the saliency detec-

tion model at the viewer side may introduce an extra delay

to live streaming which is unfriendly to the viewer. By test-

ing the live streaming in the real world, we found there ex-

ists a latency between the streamer and viewers. For exam-

ple, we test the average stream latency between a streamer

2

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on February 13,2023 at 15:59:27 UTC from IEEE Xplore. Restrictions apply.

Sampled frames

1 Saliency Maps Detection

Viewer Model

Ground-Truth Saliency

Predicted Saliency

Back propagation

KL
 d

iv
er

ge
nc

e

C
on

v.
 k

7=
3,

 c
7=

64

C
on

v.
 k

6=
3,

 c
6=

12
8

C
on

v.
 k

5=
3,

 c
5=

25
6

M
ax

Po
ol

 k
=2

, s
=2

Co
nv

lu
tio

n
k 1

=3
, c

1=
64

In
pu

tS
iz

e
64

0x
36

0

Server Side

CNNConvLSTM

Edge Side

CNNConvLSTM

... ...

LS

CNNvLS

CNNConvLSTM

CNNConvLSTM

... ...

S

CNN

C

3 Viewer Feedback

Loss

Historical Viewport

... ...

V
iew

port m
aps of Q

fram

es

S
aliency m

aps of Q

fram
es

S
alie

of Q

s+1

s+L

exchange

...

CNNM

........

CNN

ConvLSTM

......

nvLSCo

aanngehaexch

(4) Model Parameter Exchange

Viewer Side

C
on

vl
ut

io
n

k 2
=3

, c
2=

64

Co
nv

. k
4=

3,
 c

4=
25

6

Co
nv

. k
3=

3,
 c

3=
12

8

M
ax

Po
ol

 k
=2

, s
=2

C
on

v.
 k

8=
3,

 c
8=

64

(2) Viewport Prediction

Central Model

...

Fig. 1. Work flow in CoLive
in twitch.tv3 and its viewers which are from different geo-

graphical regions including North Asia (Tokyo), North Amer-

ica (Los Angeles, Waterloo), and Asian-Pacific. We observe

that the time of content held by the server before forwarding

to viewers can be up to 2 seconds4. By leveraging such la-

tency between the server and viewers, we place the saliency

feature detection model at server side and deliver the output

to edge side, which reduce the processing time of predicting

the viewport; 2) Training the model of saliency feature de-

tection at the viewer side is computationally inefficient since

the saliency feature reflects the video visual characteristics in-

stead of users’ personal viewing behavior.

Considering the live content is generated in real-time and

watched by the viewers for the first time, the offline model

which is trained with historical trajectories from millions of

viewers or transfer a pre-trained model is not suitable for live

streaming. Instead, we design an online video saliency feature

detection method that outputs the saliency feature of sampled

frames for each received video chunk. CoLive outputs the

saliency feature by using a CNN-based network. The struc-

ture of the network consists of 8 convolutional layers and 2

pooling layers. The out channel in each convolutional layer is

64, 64, 128, 256, 256, 128 and 1 respectively. The kernel size

of each layer is set to 3×3. The input layer size is 640×360,

and the final output layer size is 90× 160.

Online Training Process. In order to reduce the delay on

data processing, we need to sample each video chunk, which

also avoids the over-fitting caused by training a large number

of similar frames. In our experiment, the sampling rate is k =
6 and we normalize the input video frames to between 0 and 1.

To determine the difference between a saliency map predicted

by the model and the ground truth, we choose the Kullback-
Leibler (KL) divergence as the loss function to measure the

3https://www.twitch.tv/
4The detail results of such observations can be referred to the supplemen-

tary materials

difference since the mean square loss function performs not

very well. This can be defined as follows:

LKL(P ||Q) =
1

B

i=N∑
i=1

Qi ln

(
ε+

Qi

ε+ Pi

)
(1)

where B is the batch size (B = 8), P is the predicted saliency

maps, Q is the ground true (fixation maps) and ε is a regular-

ization constant which equals to 10−7. We apply the Adaptive

Moment Estimation (Adam) gradient descent method to train

the model. The result will be validated every 100 iterations

and the learning rate is set to 1× 10−6.

The training process can be described as follow: the on-

line training starts with detecting the saliency feature of the

first chunk from live streaming by the CNN-based model with

above configurations. The output saliency maps of sampled

frames are then delivered to the edge server. Viewers who

watched the chunk feed the server with viewport trajectories.

The server updates the saliency detection model according to

the feedback from viewers. The rest of chunk generated from

the live channel follows the same training process.

3.2. Viewport Predictions in CoLive
In this subsection, we discuss how to leverage the limited

knowledge in terms of the viewport trajectories and video

saliency maps to predict the future viewport.

Viewport Prediction Problem. The purpose of the view-

port prediction is to use the previous observed saliency maps

and viewport motion trajectories to output a series of fu-

ture viewport location maps. Let the value of pixels in the

maps as the measurement, each saliency map can be rep-

resented by a tensor Xs ∈ Rp×a×b and viewport loca-

tion map by a tensor Xv ∈ Ra×b, where p is the num-

ber of channels in the saliency map and p is equal to 1
since the saliency map is a black and white map with chan-

nel 1. Suppose saliency maps (viewport location maps,

3

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on February 13,2023 at 15:59:27 UTC from IEEE Xplore. Restrictions apply.

respectively) of received content is Q sequence of tensor

Xs
t−Q+1, X

s
t−Q+2, . . . , X

s
t (Xv

t−Q+1, X
v
t−Q+2, . . . , X

v
t , re-

spectively). Accordingly, the viewport prediction problem is

to output a L-length viewport location map sequence that in-

dicates the parts of content that users are most likely to view

in the future given the previous known Q-length sequence of

saliency and viewport location maps with θ = {s, v}.

X̂v
t+1, X̂

v
t+2, . . . , X̂

v
t+L

= argmax
Xv

t+1,...,X
v
t+L

p(Xt+1, . . . , Xt+L|Xθ
t−Q+1, . . . , X

θ
t)

(2)

Model Structure. Most current studies use the fully con-

nected LSTM (FC-LSTM) network to predict the viewport

location, which neglects the spatial feature of video content

sequences. Instead, we propose a ConvLSTM-based net-

work for the viewport prediction. ConvLSTM extends the

FC-LSTM by using a convolutional operator to replace the

Hadamard product in LSTM cell, i.e.,[14]:

It = σ(Wxi ∗Xθ
t +Whi ∗Ht−1 +Wci ∗ Ct−1 +Bi)

At = σ(Wxa ∗Xθ
t +Wha ∗Ht−1 +Wca ∗ Ct−1 +Ba)

Ot = σ(Wxo ∗Xθ
t +Who ∗Ht−1 +Wco ∗ Ct−1 +Bo)

Ct = At ◦ Ct−1 + It ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 +Bc)

Ht = Ot ◦ tanhCt

where σ and tanh are the sigmoid and hyperbolic tangent,

respectively. ∗ is the convolutional operator. The Wxj ,

Whj and Wcj , j = {i, a, o, c} are the kernal parameters,

{Bi, Ba, Bo, Bc} are the bias of the convolutional layers in

ConvLSTM. It, At, Ot denote the input, forget and output

gates at time t, respectively. Ct and Ht are the memory cell

and hidden state at time t.
Based on ConvLSTM, we design a hybrid model whose

structure is shown as Fig. 2 and deploy this model at edge

servers. The hybrid model mainly consists of ConvLSTM

processing input with a time length of Q and CNN process-

ing output. The input of each ConvLSTM cell is a concatena-

tion of the saliency map and viewport location map of a video

frame. The output Ht of ConvLSTM is then fed to a CNN

network that consists of two convolutional layers and two de-

convolutional layers. The first convolutional layer is followed

by a pooling layer and the second convolutional layer is fol-

lowed by an upsampling layer. The output channel of convo-

lutional and deconvolutional are 128, 128, 64, 1, respectively.

The kernel size of each layer are 5,2,5,2,5,5, respectively.

Local Training Process. For online predicting the view-

port, the edge server builds the above ConvLSTM hybrid

model for each viewer and timely updates the prediction

model when the viewer feedback the viewport data of sam-

pled frames to the server. We define the loss function as mean

square error with L2 regularization:

LConvLSTM (X̂v
t , X

v
t) =

1

Q

∑Q

t=1
f(X̂v

t , X
v
t)− λ‖ω′‖2

Viewport Viewport Map t

Saliency

Frame t-Q

Saliency

Viewport

Frame t Conv
LSTM

Ht-QCt-Q

...

Conv
LSTM

HtCt

Ht-1Ct-1

CNN

...

DeConv1, c=64, k=5

Conv, c=128, k=5
Maxpool, k=2, s=2
Conv, c=128, k=5
Upsample, k=2, s=2
DeConv2, c=128, k=5

CNN

Fig. 2. ConvLSTM hybrid model in CoLive
where X̂v

t and Xv
t are the predicted and real viewport location

maps for each video chunk, respectively. To timely output the

results, we set the iterations to 50 and learning rate is 1×10−3.

Collaborative Learning Process. We test the similar-

ity of viewing behaviors among in the public 360◦ video

dataset [15]. As shown in Fig. 3, most of the viewers’

ROIs are highly overlapped during the playback. For ex-

ample, point A in the figure indicates that in the 801st

frame, more than 15 tiles are watched by 30 viewers. Thus,

CoLive also collaboratively trains an integrated prediction

model by allowing the model of each viewer to share their

loss gradients to the central model. To achieve this de-

sign purpose, the central model has the same structure as

that of the prediction model for each viewer. Viewer’s

model first calculates the gradient of his loss functions in

hybrid model ∇Ls
ConvLSTM (X̂v

t , X
v
t) and upload the ac-

cumulated gradients every τ iteration. We define the ac-

cumulated gradients as αl

∑d=τ
d=1 ∇Ls

ConvLSTM (X̂v
t , X

v
t , d),

where ∇Ls
ConvLSTM (X̂v

t , X
v
t , d) indicates the gradients of

∇Ls
ConvLSTM at iteration d and αl denotes the learning rate.

Once the server receives the accumulated gradients from s,

the model parameters will be updated as follows:

WCL(e) = WCL(e− 1)− 1

Nk
∇Ls

ConvLSTM (X̂v
t , X

v
t)

Point A [frame 801]

Point C [frame 1601]

Point B [frame 1201]

Fig. 3. Viewers similarity in viewport locations

4. PERFORMANCE EVALUATION

4.1. Experimental Setup

We have built a 360◦ streaming prototype system based on

the open-source framework srs5. This prototype system in-

5https://github.com/ossrs/srs

4

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on February 13,2023 at 15:59:27 UTC from IEEE Xplore. Restrictions apply.

Alien Conan1 Rhinos War
Accuarcy

0

0.2

0.4

0.6

0.8

1

1.2
PanoSalNet
CoLive
LiveDeep

Alien Conan1 Rhinos War
Precision

0

0.2

0.4

0.6

0.8

1

1.2
PanoSalNet
CoLive
LiveDeep

Alien Conan1 Rhinos War
Recall

0

0.2

0.4

0.6

0.8

1

1.2
PanoSalNet
CoLive
LiveDeep

Accuarcy Recall Precision
Average Results

0

0.2

0.4

0.6

0.8

1

1.2
PanoSalNet
CoLive
LiveDeep

Fig. 4. The performance of three methods (CoLive, LiveDeep, PanoSalNet): (a) Overall performance, (b) average accuarcy, (c)

average recall, and (d) average precision.

cludes one central server (CS), one edge server (ES), two teth-

ered terminals (TTs) and two mobile terminals (MTs). We

provide the diagram of the system prototype in the supple-

mentary materials. We deployed two servers (Dell R740 with

Intel Xeon Gold 5222, 3.8Ghz/32G) as CS and ES, respec-

tively. We implement the models of these solutions over four

network nodes including two Dell workstations that for each

has an i7-10700 CPUs and an RTX3070 with 8G RAM, and

two personal notebooks (Intel i7 10750H CPUs and RTX2070

with 8G RAM and AMD R5 CPUs and RTX2060 with 6G

RAM). We use HTTP Live Streaming (HLS) to stream the

live panoramic video from the severs to users. We deploy

saliency feature detection model over the server side, and four

learning agents (TTs and MTs) with the viewer prediction

model at the edge server. We adopt the PyTorch 1.8.1 with

Python 3.7 to implement our model6.

We compare CoLive with PanoSalNet [5] and LiveDeep
[12] based on the public panoramic video user behavior
dataset [15] and saliency dataset [16]. A brief introduction

of baseline methods and datasets are given in our supplemen-

tary materials.

4.2. Evaluation on a System Prototype

Performance of Saliency Detection. Table 1 shows the

saliency detection results of saliency dataset, PanoSalNet and

CoLive. In this table, the saliency related metrics include CC,

AUC, sAUC and NSS introduced by [17], which measure the

errors between the detected saliency maps and ground truth

eye fixation maps. These metrics suggest that our lightweight

model can learn similar saliency feature compared with the

model in PanoSalNet. Moreover, PanoSalNet is an offline

model which cannot be applied for live streaming.

Results of Viewport Prediction. Fig. 4 compares the

three methods in overall performance and average accuracy,

recall and precision in several panoramic videos. Fig. 4 (a)

illustrates the overall performance of three solutions. CoL-
ive and PanoSalNet achieved no less than 90% accuracy in

the average of all tested videos. The accuracy and recall of

LiveDeep are around 80% yet the precision is only above

20%. The reason for this poor precision is because the number

6The source code is available at https://github.com/EricPengShuai/CoLive.

of selected tiles (40∼50 tiles during the tests) is far more than

the size of the real viewport. PanoSalNet and CoLive jointly

input the visual feature and individual’s viewing behaviors to

predict the viewport locations, which improves the accuracy.

CoLive further integrates models with similar viewing behav-

ior, thus improving the accuracy of new viewers and thus the

average performance during testing. Fig. 4 (b)-(d) plot the av-

erage precision, recall and accuracy, respectively for different

videos, which reveal a similar trend as 4 (a). More compre-

hensive results are given in our supplementary materials.

Table 1. Saliency feature detection performance

Approaches CC AUC sAUC KL
DatasetSaliency 0.2885 0.9941 0.7966 2.4531

PanoSalNet 0.2521 0.9512 0.7112 3.7425

CoLive 0.2047 0.9814 0.7847 3.6678

1 2 3 4
The number of concurrent viewers [n]

0

7

14

21

28

35

B
an

dw
id

th
 [M

bp
s]

 Conan 1 (saving)
 Conan 1 (signalling)
 Skiing (saving)
 Skiing (signalling)
 Conan 2 (saving)
 Conan 2 (signalling)
 Surfing (saving)
 Surfing (signalling)

Alien Conan1 Rhinos War
Video Name

0

10

20

30

40

50

60

Th
e

nu
m

be
r o

f s
el

ec
te

d
til

es

PanoSalNet
CoLive
LiveDeep

Fig. 5. (a) The number of selected tiles with high definitions,

(b) CoLive singal overhead and bandwidth savings.

Fig. 5 shows the bandwidth savings and signal overhead.

As in Fig. 5 (a), CoLive performs well in terms of bandwidth

savings since the selected tiles maintain around 20 when pre-

dicting viewport and this number is only half of LiveDeep.

This is because CoLive has good performance in both ac-

curacy and precision and viewers don’t need to spend ex-

tra bandwidth resources to fetch unviewed tiles. Fig. 5 (b)

shows the variation of control signaling overhead and band-

width saving with the number of concurrent viewers. Be-

cause updating model parameters in CoLive requires the in-

teractions between the video server and edge server, the extra

bandwidth consumed by updating parameters cannot be ne-

glected. However, compared with the bandwidth savings on

prediction, such signal overhead is acceptable to the system.

5

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on February 13,2023 at 15:59:27 UTC from IEEE Xplore. Restrictions apply.

Processing Time. To support smooth video streaming,

we also test the processing time of saliency feature detection

and viewport prediction modules in CoLive. Table 2 shows

the processing time of our model trained in different epochs

for different videos. The saliency feature detection time in-

creases with the epoch of training, but it is smaller than the

average streaming latency tested in our supplementary materi-

als. This indicates that the server can output the saliency map

before the viewer requests the corresponding content, which

avoids the latency introduced by detecting saliency feature.

The processing time of viewport prediction also reveals a lin-

ear growing trend when the epoch increases. But even for the

case of epoch equals 15, it is still less than the video chunk

length (2s) in our system. Therefore, CoLive can support the

smooth video streaming.

Table 2. Processing time (s) of the saliency detection (termed

as Sal) and viewport prediction (termed as View) in CoLive

Video
Epoch=5 Epoch=10 Epoch=15

Sal View Sal View Sal View
Conan1 0.190 0.542 0.379 1.083 0.569 1.611

Skiing 0.195 0.540 0.386 1.075 0.587 1.610

Alien 0.193 0.542 0.386 1.084 0.576 1.633

Conan2 0.193 0.542 0.387 1.085 0.579 1.637

5. CONCLUSION

In this paper, we propose CoLive, a novel viewport predic-

tion method tailored for 360◦ live streaming service. To ad-

dress the existing challenges of viewport prediction in 360◦

live streaming, CoLive migrates the video saliency detection

module to the server side to avoid the processing delay. The

edge computing server applies a hybrid model to perform the

online viewers’ future viewport prediction. Moreover, a col-

laborative online learning scheme is then proposed, which al-

lows viewers’ models to share their parameters to a central

model. The experiment results show that CoLive outperforms

several state-of-the-art solutions in terms of prediction accu-

racy, bandwidth savings and has reasonable signal overheads

and processing time.

6. REFERENCES

[1] A. Yaqoob, T. Bi and G. -M. Muntean, “A Survey on

Adaptive 360° Video Streaming: Solutions, Challenges

and Opportunities,” in IEEE Commun. Surveys & Tuto-

rials, vol. 22, no. 4, pp. 2801-2838, Fourthquarter 2020.

[2] P. Maniotis and N. Thomos, “Tile-Based Edge Caching

for 360° Live Video Streaming,” in IEEE Transactions on

Circuits and Systems for Video Technology, vol. 31, no.

12, pp. 4938-4950, Dec. 2021.

[3] O. Eltobgy, O. Arafa and M. Hefeeda, “Mobile Stream-

ing of Live 360-Degree Videos,” in IEEE Transactions on

Multimedia, vol. 22, no. 12, pp. 3139-3152, Dec. 2020.

[4] L. Zhong et al., “A Multi-user Cost-efficient Crowd-

assisted VR Content Delivery Solution in 5G-and-beyond

Heterogeneous Networks,” in IEEE Transactions on Mo-

bile Computing, vol.99, no.99, pp. 1-1, Jan. 2022.

[5] A. Nguyen, Z. Yan, and K. Nahrstedt. “Your Attention is

Unique: Detecting 360-Degree Video Saliency in Head-

Mounted Display for Head Movement Prediction,” In

Proc. of the 26th ACM international conference on Mul-

timedia (MM ’18), NY, USA, pp. 1190–1198.

[6] Y. Xu, et. al., “Gaze Prediction in Dynamic 360° Immer-

sive Videos,” IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 5333-5342.

[7] C. Wu, R. Zhang, Z. Wang, et. al., “A spherical convolu-

tion approach for learning long term viewport prediction

in 360 immersive video,” Proceedings of the AAAI Con-

ference on Artificial Intelligence, pp. 14003-14040, 2020.

[8] X. Hou, et al., “Predictive Adaptive Streaming to Enable

Mobile 360-Degree and VR Experiences,” in IEEE Trans-

actions on Multimedia, vol. 23, pp. 716-731, 2021.

[9] L. Xie, et al., “360ProbDASH: Improving QoE of

360 Video Streaming Using Tile-based HTTP Adaptive

Streaming,” In Proceedings of the 25th ACM interna-

tional conference on Multimedia (MM ’17), NY, USA,

pp. 315–323, 2017.

[10] A. T. Nasrabadi, et al., “Adaptive 360-Degree Video

Streaming using Scalable Video Coding,” In Proceedings

of the 25th ACM international conference on Multimedia

(MM ’17), NY, USA, pp. 1689–1697, 2017.

[11] M. Xu, et al., “Predicting Head Movement in Panoramic

Video: A Deep Reinforcement Learning Approach,” in

IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 41, no. 11, pp. 2693-2708, Nov. 2019.

[12] X. Feng, et. al., “LiveDeep: Online Viewport Prediction

for Live Virtual Reality Streaming Using Lifelong Deep

Learning,” 2020 IEEE Conference on Virtual Reality and

3D User Interfaces (VR), pp. 800-808, 2020.

[13] M. Wang, C. Xu, X. Chen, H. Hao, et al., “Differential

Privacy Oriented Distributed Online Learning for Mobile

Social Video Prefetching,” in IEEE Transactions on Mul-

timedia, vol. 21, no. 3, pp. 636-651, March 2019.

[14] X. Shi, Z. Chen, H. Wang, et. al., “Convolutional LSTM

Network: A Machine Learning Approach for Precipita-

tion Nowcasting,” MIT Press, 2015.

[15] C. Wu, Z. Tan, Z. Wang, et. al., “ A Dataset for Explor-

ing User Behaviors in VR Spherical Video Streaming”,

In Proceedings of the 8th ACM on Multimedia Systems

Conference (MMSys’17). NY, USA, pp. 193–198, 2017.

[16] A. Nguyen, et al., “ A saliency dataset for 360-degree

videos,” In Proc. of the 10th ACM Multimedia Systems

Conference (MMSys ’19), NY, USA, pp. 279–284, 2017.

[17] Z. Bylinskii, et al., “What Do Different Evaluation Met-

rics Tell Us About Saliency Models?,” in IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol.

41, no. 3, pp. 740-757, 1 March 2019.

6

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on February 13,2023 at 15:59:27 UTC from IEEE Xplore. Restrictions apply.

