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Abstract—Intensive video transcoding and data transmission
are the most crucial tasks for large-scale Crowd-sourced Livecast
Services (CLS). However, there exists no versatile model for joint
optimization of computing resources (e.g., CPU) and transmission
resources (e.g., bandwidth) in CLS systems, making maintaining
the balance between saving resources and improving user viewing
experience very challenging. In this paper, we first propose a
novel universal model, called Augmented Graph Model (AGM),
which converts the above joint optimization into a multi-hop
routing problem. This model provides a new perspective for the
analysis of resource allocation in CLS, as well as opens new
avenues for problem-solving. Further, we design a decentralized
Networked Multi-Agent Reinforcement Learning (MARL) ap-
proach and propose an actor-critic algorithm, allowing network
nodes (agents) to distributively solve the multi-hop routing
problem using AGM in a fully cooperative manner. By leveraging
the computing resource of massive nodes efficiently, this approach
has good scalability and can be employed in large-scale CLS.
To the best of our knowledge, this work is the first attempt to
apply networked MARL on CLS. Finally, we use the centralized
(single-agent) RL algorithm as a benchmark to evaluate the
numerical performance of our solution in a large-scale simulation.
Additionally, experimental results based on a prototype system
show that our solution is superior in saving resources and service
performance to two alternative state-of-the-art solutions.

I. INTRODUCTION

Due to their increased interactivity and real-time user ex-

perience, Crowd-sourced Livecast Services (CLS) such as

Twitch [1] and Douyu [2] are among the most popular online

entertainment services. The latest statistics indicate that Twitch

has almost 5.76 million broadcasters monthly and an average

of 1.94 million concurrent viewers in 2020 [3]. Additionally,

the average daily active viewer number of Douyu reached

24.77 million in July 2020 [4]. Moreover, CLS is extending

its presence to all aspects of life, including education and

health care, especially during the global COVID-19 pandemic.

However, the increased use of CLS also brings new challenges

to current CLS systems. A CLS provider needs to continuously

deliver millions of content items to viewers, as well as perform

online transcoding of massive amounts of video into multi-

quality resolutions to fit various configurations of networks and

devices. Hence, CLS deployment requires intensive computing

and large bandwidth support, which is very costly. According

to Douyu’s annual report, the bandwidth cost in 2019 alone

was $88.3 million which is 10% of its total expenditure [5].

To alleviate the CLS system overhead, researchers suggested

using transcoding optimization schemes [6]–[9]. For example,

a Lyapunov-based solution was proposed to minimize the op-

erational cost of the CLS system in the cloud [6]. The authors

of [7] designed an online algorithm that minimizes the cost of

the Cloud-based CLS system while ensuring Quality of Expe-

rience (QoE). In addition, many other computing paradigms

such as involving edge and crowd computing are considered as

alternative solutions [10]–[17]. H. Pang et al. [11] proposed a

novel concept, called transcoding delivery path, which involves

video streaming transcoded into multiple versions during the

delivery path. Further, a deep neural network based algorithm

was proposed to optimize the transcoding delivery path for

CLS flows to achieve efficient transcoding and delivery over

a cloud-edge infrastructure. Z. Wang et al. [12] provided a

joint online transcoding and delivery solution by formulating

a joint resources allocation problem as a conventional 0/1

knapsack problem. A greedy-based heuristic algorithm was

proposed to solve the resulting NP-hard problem. Y. Zhu et

al. [14] proposed a novel cloud-crowd solution by leveraging

massive crowd computing resources to assist the cloud, thereby

achieving a 93% saving in terms of cloud overhead. The cloud-

crowd solution was further extended with an auction-based

incentive scheme [16] to motivate the crowd contributing

resources for large-scale CLS deployment.

CLS systems have evolved from using a centralized cloud

approach to employing a distributed computing paradigm with

hybrid resources of cloud, edge, and crowd. By integrating

cost-effective cloud, low latency edge, and cheap crowd, the

distributed computing paradigm is identified as a promising

solution for large-scale CLS. However, existing solutions still

have some limitations such as unsatisfactory QoE performance

[6]–[9], difficulty in terms of large-scale deployment [6]–[12],

and insufficient delivery capacity [13]–[17]. We believe the

main reason for this situation is that there exists no versa-

tile analysis model which can jointly capture the stochastic

features of transcoding and delivery in CLS. This complicates

the modeling and often makes the results suboptimal. To solve

this problem, we expand the ideas of Universal Max-Weight

(UMW) [18] and Universal Computing Network Control (UC-

NC) [19] proposed by E. Modiano et al. and introduce a novel

universal Augmented Graph Model (AGM). By adding virtual

nodes and links in the network topology, we represent video

transcoding as a process of video transmission over virtual

links. However, video delivery is a process of video transfer

between real network nodes. Therefore, there is a need for

joint optimization of video transcoding and transmission and
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in AGM this process is converted into a problem of routing

video data between different virtual and real nodes.

Although, AGM simplifies the analysis and modeling of

the joint optimization, the deployment of large-scale CLS still

requires a highly scalable approach. Current solutions such as

UMW [18] and UCNC [19] can obtain the optimal network

routing for each flow, but they all rely on a central coordinator

which may show inflexibility in large-scale CLS. In UMW,

the central node needs knowledge of network topology and

virtual queue-length in every time-slot to solve the shortest

route problem. Although the authors give a heuristic solution,

it lacks performance analysis. To address this challenge, we

employ the Multi-Agent Reinforcement Learning (MARL)

[20] approach, which has been recognized as a promising so-

lution for distributed network routing [21]–[27]. For example,

P. Sun et al. in [23] proposed a Deep Reinforcement Learning

(DRL)-based network control framework, called SINET for

routing optimization in Software-Defined Networking. How-

ever, the operation of the system relies heavily on the central

controller and the problem of large-scale deployment is still

not solved. A fully distributed packet routing framework with

multi-agent deep reinforcement learning is proposed in [26].

In this framework, each node owns independent long short

term memory based deep neural network which can learn

the routing features from the memory of historical routing

action and estimate the overall expected reward function (Q

value). L. Yang et al. [27] designed a MARL-based distributed

routing protocol called DMARL to improve the energy-saving

and routing reliability for underwater optical wireless sensor

networks. By using a two-tier reward structure, a global reward

and a distributed reward, this approach can achieve efficient

network energy balancing and support distributed deployment

of algorithms. However, the above two solutions are based

on Q-Learning, which is poorly suited to a networked multi-

agent scenario. The main issue is that, in the training process,

the routing strategy of each network node is changing, and

the environment becomes unstable from the perspective of

any individual agent (such as when a node makes the same

routing decision twice, it may get totally different rewards,

since other nodes adopt different decisions) [28]. This leads

to instability in learning and unusable experience replay, and

makes Q-Learning use infeasible.

This paper introduces the Augmented Graph Model which

transforms the joint allocation optimization of computing re-

sources and transmission resources into a generalized network

routing problem. Further, we employ networked MARL as a

solution to solve the routing problem in a fully distributed

manner. Due to the drawbacks of Q-Learning in the multi-

agent environment, we introduce a novel Multi-Agent Actor-

Critic (MAAC) solution based on the policy gradient theorem

achieving a more robust system. By the adversarial learning

between the actor and the critic, they optimize the action policy

and action-value function, respectively. In MAAC, each agent

makes decisions individually in the actor step and exchanges

its data with its one-hop neighbors for global consensus in

the critic step. Compared with the current CLS solutions [6]–

[17], our work provides a new perspective for solving the joint

optimization of transcoding and delivery in large-scale CLS.

The main contributions of this paper are as follows: We

introduce a universal AGM which simplifies the problem of

joint optimization of video transcoding and transmission over

virtual network links. We use a networked multi-agent Markov

decision process based on Decentralized MDP (Dec-MDP) to

reformulate the above problem and propose networked MARL

based solution to distributively solve it for large-scale CLS. To

the best of our knowledge, this is the first attempt to employ

networked MARL in CLS. We design MAAC algorithm,

which enables the global dissemination of local information

at each agent using one-hop information sharing. This enables

all agents in the CLS system to reach a consensus estimate and

achieve the maximum reward for the entire system.We evaluate

our solution through a large-scale numerical simulation and

prototype system experiments. The experimental results show

that our algorithm outperforms the current solutions in terms

of both saving resources and service performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model. We

illustrate AGM for a large-scale CLS system with cloud-edge-

crowd integration. Finally, we formulate the joint resource

allocation problem of transcoding and delivery based on AGM.

A. Network Model

We consider the network topology of large-scale CLS as an

undirected graph G(V, E) with |V| nodes and |E| links. We

define the set of broadcasters, Cloud Servers (CSs) or Edge

Servers (ESs) and the viewers as Vp,Vt,Vc ∈ V , respectively.

We assume that the time is slotted, such as T = {1, 2, ...} and

each node u ∈ V has transcoding capability. Since the node

may process tasks of other applications, we define the available

computing resource at time t as a time-varying variable cu(t).
Thus, we have cu(t) ∈ [0, cmax

u ] where cmax
u is the maximum

computing resources of node u. The network link from node

u to node v is defined as (u, v) ∈ E , u, v ∈ V . When a video

flow passes through link (u, v), it consumes w(u,v) bandwidth

resources per unit. Since video streaming is also subject to

various cross-traffic from other applications, we define the

available bandwidth of the link (u, v) as a random variable

c(u,v)(t) ∈ [0, cmax
(u,v)] where cmax

(u,v) is the maximum bandwidth.

B. Transcoding Model

We define the CLS library as F = {f1, f2, ..., fN} which

consists of |F| different channels. For each channel, we

assume that the set of video resolution is B = {b0, b1, ..., bm}.

We consider the original video as b0 and the lowest quality

one as bm, so we have b1 > ... > bm. Since the higher

resolution video can be transcoded to lower quality versions

[29], [30], the video transcoding model can be described as

a state transition of different versions. Thus, the order set for

the n-th channel is denoted by On = {b0, b1, ..., bm} which

can be represented as a directed graph G′(V ′, E ′), as shown in

Fig. 1 (a). We can see that each vertex v′h ∈ V ′ corresponds

to a video quality bh and each link, such as (h − 1, h) ∈ E ′

represents the transcoding process from resolution bh−1 to bh.
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Fig. 1. (a) Illustration of the video transcoding in graph G′(V ′, E ′); (b)
multi-stage transcoding process for a specific flow f .

When a video flow passes through link (x, h), 0 < x < h, we

assume that the CLS system will consume w(x,h) computation

resources per unit for transcoding. Fig. 1 (b) illustrates an

example of a multi-stage transcoding process. In the first stage,

the video flow f is transcoded from b0 to bi with computation

requirement w(0,i) per unit. Further, the flow is converted

into bj in the second stage which consumes w(i,j) computing

resources per unit. Thus, the total resource consumption per

unit for the flow f is wf = w(0,i) + w(i,j).

C. Universal Augmented Graph Model

As shown in Fig. 2, we consider a large-scale CLS system

with cloud-edge-crowd integration. The network topology of

the system can be embodied as an overlay network. We

define the overlay network as the original layer network

enhanced with an undirected graph G0(V0, E0) where V0 and

E0 represent the nodes and links in original layer network,

respectively. When video transcoding is invoked at a specific

node, the resolution of the video will change, such as from

b0 to b1. We define that for videos with different standard

resolutions. Each resolution such as bi corresponds to an

augmented network layer Gi(Vi, Ei). Thus we have a layer

graph Gi(Vi, Ei), i ∈ {0, 1, ...,m}. Since the high resolution

video can be transcoded into a lower one, we can connect

the different layers with directed virtual links, such as the

link from node 90 to node 91 in Fig. 2. We define the multi-

layer graph GB(VB, EB),B = {0, 1, ...,m} as the Augmented

Graph Model (AGM). Besides, each link l ∈ EB , is associated

to a weight factor wl which represents the resource (including

computing resources and transmission resources) cost per unit.

We define three roles for nodes in the CLS system: Con-

sumer, the viewer who issues a request for a specific channel;

Transcoder, the intermediate node (CSs, ESs or viewers) which

receives the video from the broadcaster or other Transcoders

and converts them into the resolution asked by the Consumer;

Provider, the broadcaster which continuously generates and

uploads the original video to the CLS system. We can rep-

resent any patterns of transcoding and delivery for a flow

with a route from Provider to Consumer on the AGM. For

example, we consider that Consumer i and Consumer j request

data from Provider at the same time. The two processes of

the video access can be represented as two virtual paths

(VPath i and VPath j) shown by the blue line and red line in

Fig. 2. The blue line represents a video transcoding delivery

path (00, 20, 30, 50, 51, 71) from Provider to Consumer i. The

transcoding process invoked at node 5 converts the video from

b0 to b1. Meanwhile, for the red line, transcoding processes are

invoked at node 5 and node 8. Notice that the red line and the

blue line have overlapping paths. In this case, the CLS system

only needs to transmit and transcode the video stream once
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Fig. 2. Illustration of AGM for CLS based on Cloud-Edge-Crowd integration.

on the overlapping path, reducing the system transmission

overhead. In other words, when two VPaths overlap more,

in general, the resource utilization is more efficient.

It can be seen how AGM transformed the joint resource

allocation problem of transcoding and transmission into a

network routing problem.

D. Problem Formulation

Our goal is to optimize Quality of Service and achieve

the lowest joint resources overhead of the CLS system. First,

we consider the service performance of CLS and define the

received data unit of Consumer c ∈ Vc at time t as xc(t). When

the received video resolution is bc, the received data rate for

Consumer c is equal to bcxc(t). Thus, the utility of Consumer

c is U (bcxc (t)) where U(·) is the utility function. The utility

function U(·) can have multiple forms, such as that in [31].

The overall QoS of CLS system is
∑

c∈Vc
U (bcxc (t)).

We consider the joint resource overhead of the CLS system

based on AGM. As mentioned earlier, when diverse video

flows passes through link l ∈ EB, it costs wl resources per

unit. Note that since node may receive multiple requests for

same video version (the overlapping path), the node only needs

to process once. Therefore, the resource consumption of link l
is denoted as

∑
c∈Vc,l

wlxc(t) where Vc,l represents the set

of all Consumer with the flows of diverse videos passing

through link l. The overall resources cost of the system can be

written as fc(x) =
∑

l∈EB

∑
c∈Vc,l

wlxc(t), where fc(·) is the

cost function. By combining the service performance and joint

resources cost, we formulate the joint resources allocation of

transcoding and delivery for CLS as follows.

∀t : Ut(x) = max

(∑
c∈Vc

U(bcxc(t))− βfc(x)

)
(1a)

s. t.
∑

l∈EB(v)

∑
u∈Vc,l

wlxc(t) ≤ cv(t), ∀v ∈ V (1b)

∑
l∈EB(u,v)

∑
u∈Vc,l

wlxc(t) ≤ c(u,v)(t), ∀(u, v) ∈ E (1c)

xc(t) ∈ [0, xmax], ∀c ∈ Vc (1d)
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where Ut(x) is the objective function with x = (x1, ..., x|Vc|),
β is the weight factor, and xmax is the maximum reception

rate. EB(v) represents the set of all virtual links for transcoding

processes associated with node v and EB(u, v) is the set

of all virtual transmission links corresponding to the real

link (u, v). The objective (1a) is to maximize the sum of

overall utility and the negative total consumption of virtual

links. The constraint (1b) indicates that the transcoding rate

cannot exceed the available computing capacity of node u.

The constraint (1c) shows that the transmission rate should be

less than the available bandwidth of the link (u, v). Finally,

(1d) is the boundary constraints of data rate for flow c ∈ Vc.

III. NETWORKED MULTI-AGENT REINFORCEMENT

LEARNING FOR JOINT TRANSCODING AND TRANSMISSION

OPTIMIZATION

In this section, we first provide the necessary background

about decentralized Markov Decision Process (Dec-MDP) and

Actor-critic (AC) algorithm. We give a brief introduction of

networked Multi-Agent MDP and reformulate problem (1) in

the networked MARL framework.

A. Background

1) Decentralized Markov decision process: A Dec-MDP

is defined as a 5-tuple M = (VB, S, A, P,R) where

• VB: a set of agents corresponding to the virtual nodes.

• S: a finite joint state space. In the CLS system, the joint

state s contains the available resources {cl(t)}, ∀l ∈ VB.

• A: is the set of joint actions a =< a1, ..., a|VB| >.

For agent u, the set of available actions is Au. For our

problem, a joint action is to find a route for a specific

flow x(t) from a Provider to a Consumer in AGM.

• P (s′|s,a) : S×A×S → [0, 1] is a transition probability

function from state s′ ∈ S to s ∈ S when action a ∈ A
is taken.

• R : S ×A → R is the immediate reward function which

is denoted as R(s,a) =
∑

u∈VB E[rut+1|st = s,at = a],
where rut+1 is the reward of network agent u at time t+1.

For all agents u ∈ VB, the joint policy is a mapping π =<
π1, ..., π|VB| >: S×A → [0, 1] to maximize the expectation of

cumulative reward. We define the expected long-term averaged

reward return R(π) as the following equation.

R(π) =
1

T
lim

T→∞

T∑
t=1

R (s,a) (2a)

(a)
=

1

T |VB|
lim

T→∞

T∑
t=1

∑
c∈VB

E(rut+1) (2b)

(b)
=

∑
s∈S,a∈A

dπ(s)π(s,a)R̄(s,a) (2c)

where dπ(s) = limt P(st = s|π) is the stationary distribution

under policy π and R̄(s,a) = E[r̄ut+1|st = s,at = a] is

the averaged reward function of all agents where r̄ut+1 =
1

|VB|
∑

u∈VB rut+1. For equation (2b), we let the immediate

reward R(s,a) equal to the utility Ut(x) at time t. Thus,

we have the return R(π) =
∑T

t=1 Ut(x). Since the (1) is

separable about the network agents, we can write the reward

of agent u ∈ VB as following.

rut =
∑

l∈VB(u)

∑
c∈Vc,l(u)

[
1

Nc
U(bcxc(t))− βwlxc(t)

]
(3)

where Nc is the number of agents in the route from Provider

to Consumer c with AGM, VB(u) is the set of virtual links

connected with to agent u, and Vc,l(u) is the set of Consumers

that its flow is transcoded or transmitted by agent u. The

equation (2c) is based on a standard regularity assumption [32]

and holds when for any π, the Markov chain is irreducible and

aperiodic [33]. We have the state-value function Vπ(s) and the

action-value function Qπ(s,a) in the following equations.

Qπ(s,a) =
∑
t

E[r̄t+1 −R(π)|s0 = s,a0 = a, π] (4a)

Vπ(s) =
∑
a∈A

π(s,a)Qπ(s,a) (4b)

where r̄t+1 = 1
|VB|

∑
u∈VB rut+1. Since the expected long-term

average reward is related to problem (1), we can obtain the

joint action-value Qπ(s,a) with equation (1a) based on the

joint state s and action a information. To estimate the optimal

policy for each agents, we represent the joint policy π =
{π1, π2, ...} to a parametrized function πθ = {π1

θ1 , π2
θ2 , ...}.

2) Actor-critic algorithm: the AC algorithm is a method

for the maximization reward problem by solving the optimal

policy πθ. According to [33], [34], we have the gradient of

the return R(πθ) with respect to the policy parameter θ as.

∇θR(θ) = Es∼dθ,a∼πθ
{∇θ log πθ(s,a) · Aπθ

(s,a)} (5)

where Aπθ
(s,a) is the advantage function which is equal to

Qπθ
(s,a)−Vπθ

(s). Thus, we have the sample of the advantage

function.

At = Q(st,at)−
∑
a∈A

πθt(st,a)Q(st,a) (6)

For simplicity, we define the sample of ∇θ log πθ(s,a) as

ηt = ∇θ log πθt(st,at). The parameter approximation of joint

policy πθ has the following common equation [34].

θt+1 = θt + ρθ,t · At · ηt (7)

where ρθ,t > 0 is the stepsize. In our problem, since the

reward function is determinate, we only need all agents reach a

consensus on the action-value function in critic step. Besides,

we need consider the actor step which is responsible for the

parameter update (7) of the joint policy.

B. Networked Multi-Agent Reinforcement Learning

When employing networked MARL framework to solve

problem (1), we need to consider the network topology

of the CLS system. We introduce Networked Multi-Agent

MDP [33] which can be represented by a 6-tuple M =
(VB, S, A, P,R,G(V, E)) with the extension of Dec-MDP,

where G(V, E) is the network topology. In our design, since

a network node is associated with multiple virtual nodes, we

consider each node contains multiple agents. We also let the

network nodes share the information of local reward with its
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neighboring nodes at each time-slot. In MARL, the joint state

st and action at are globally observable [33], [34]. Besides,

the agents u ∈ VB in CLS has its local action policy πu
θ (s, a

u)
and reward function Ru(st, a

u
t ).

To facilitate understanding, we first give a brief introduction

of the MARL process. At each time-slot t, each agent u ∈ VB
execute aut based on the global state st = {cl(t)}, ∀l ∈ VB.

As a result, agents in node v get a reward rut+1, u ∈ VB(v)
based on the equation (3). After all agents make the joint

action at, the CLS system shifts to a new state st+1 based on

the transition probability function P (s′|s,a). In addition, the

nodes update their parameters based on the reward and share

the reward with their neighbors. Note that the agent u make its

own action decision aut individually. This means that each a-

gent u has its own policy πu
θ (s, a

u) which is based on the state

s. Thus, we have the joint policy πθ =< πu
θ (s, a

u) >u∈VB .

We focus on the policy πu
θ (s, a

u) of each agent u. For our

problem (1), the function of each agent is to route video flow

from Provider to Consumer on AGM. When an agent receives

a flow, it needs to send the flow to one of the next hop agents

according to the current state st. Therefore, πu
θ (s, a

u) is the

probability that agent u selects action aut at state st. Since

st contains the available resource of each link l ∈ VB, we

restrict that the agent u can only send flow c to the next-

hop agent v with sufficient link capacity c(u,v) ≥ w(u,v)xc(t).
Moreover, to avoid a loop route, we let the header of flow

packet carry a “Nonce” identifier. When an agent detects

duplicate “Nonce” in a received packet within one slot, it

drops the packet. In this case, the agents u associated with

the discarded packet receives the negative immediate reward

rut = −∑l∈VB(u)

∑
c∈Vc,l(u)

βwlxc(t). Since we consider a

large-scale CLS, the joint state space S is very big. Using

a parameterized function to approximate the policy function

πu
θ (s, a

u) is efficient [34]. Because each agent has its own

policy, we define the approximate parameters of the agent u
as θu ∈ Θu. Further, we define the parameters of policy πθ as

θ = [(θ1)�, ..., (θ|EB|)�]� ∈ Θ, where Θ =< Θu >u∈VB . To

use an AC algorithm with function approximation, we need to

make the following standard regularity assumption [32]–[34].

Assumption 1. For any u ∈ VB, s ∈ S, and au ∈ A, the
parameterized function πu

θu(s, au) is always greater than zero
for any θu ∈ Θu. Besides, with respect to θu ∈ Θu, πu

θu(s, au)
is continuously differentiable. We define the transition matrix
of the joint state s with policy πθ as P θ and have:

P θ(s′|s) =
∑
a∈A

πθ(s,a) · P (s′|s,a), ∀s, s′ ∈ S (8)

Also, we suppose that the evolution of joint state {st}t≥0 is
irreducible and aperiodic with any πθ.

It is easy to prove that the above assumptions are true

in our problem. In AGM, when the CLS system has no

external interference (e. g. cross-traffic), the transition prob-

ability function P θ is determinate. This is because when the

routing (joint action) at and the current system status (joint

state) st are determined, the next-slot network status st+1

is also determined under no interference. Under interference

conditions, since the network environment is uncertain and

stochastic [37], the interference can be regarded as Gaussian

noise, thus we consider that Assumption 1 holds.

Next, we consider the goal for the problem (1) in networked

MARL framework. We want to design an algorithm that

allows all agents to find the optimal joint policy πθ in a fully

cooperative manner. We consider the optimal joint policy πθ

that maximizes the return of the entire CLS system R(π). As

defined above, we have the return R(π) =
∑T

t=1 Ut(x) and

reformulate problem (1) as follows.

max
θ

R(πθ) =
1

T |VB|
lim

T→∞

T∑
t=1

∑
c∈VB

E(rut ) (9a)

s. t. (1b) & (1c) & (1d) (9b)

according to (4a) and (4b), we have the following parametrized

forms of action-value function and state-value function.

Qπθ
(s,a) =

∑
t

E[r̄t+1 −R(πθ)|s0 = s,a0 = a, πθ] (10a)

Vπθ
(s) =

∑
a∈A

πθ(s,a)Qπθ
(s,a) (10b)

IV. MULTI-AGENT ACTOR-CRITIC ALGORITHM

In this section, we first introduce the policy gradient theorem

for MARL. Then, we design the Multi-Agent Actor-Critic

(MAAC) algorithm to solve problem (9) and describe the

implementation of the algorithm.

A. Policy Gradient Theorem

One of the main issues for the algorithm design is whether

agent u can obtain an approximate parametrized policy πu
θu

with local information. For this problem, we first need to

introduce a policy gradient theorem of networked MARL for

our problem as shown in Theorem 1 which shares a similar

proof in based on the single-agent reinforcement learning [36].

Theorem 1. Based on equations (2c) and (9a), we have the
return R(πθ) =

∑
s∈S,a∈A dπθ

(s)πθ(s,a)R̄(s,a) where πθ

is the parametrized policy and θ ∈ Θ. Besides, according to
(10a) and (6), for any agent u ∈ VB, we further have the local
parametrized advantage function Au

πθ
: S ×A → R.

Au
πθ
(s,a) = Qπθ

(s,a)− V̂ u
πθ
(s,a�u) (11)

where a�u is the joint action except agent u and
V̂ u
πθ
(s,a�u) is equal to

∑
au∈Au πu

θu(s, au)Qπθ
(s, au,a�u).

Qπθ
(s, au,a�u) represents the action-value function of agent

u under the condition a�u. Since parameter matrix θ =
[(θ1)�, ..., (θ1)�]�, we have the gradient of the return R(πθ)
with respect to θu as following.

∇θuR(πθ) = Es∼dθ,a∼πθ
{∇θu log πu

θu(s, au) · Aπθ
(s,a)}

= Es∼dθ,a∼πθ
{∇θu log πu

θu(s, au) · Au
πθ
(s,a)}

(12)

For simplicity, we denote φθu(s, au) = ∇θu log πu
θu(s, au)

as the individual score function for agents u.

Proof. Based on [36], we give the proof of Theorem 1. We

have the joint policy πθ =< πu
θ >u∈VB . Since each agent
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make action decision independently, we consider that πθ =∏
u∈VB πu

θ . According to the gradient of the return R(πθ) with

respect to θ in single-agent reinforcement learning [36], we

have the following equation

∇θR(πθ) = Es∼dθ,a∼πθ
{∇θ log πθ(s,a) · Qπθ

(s,a)}

=
∑
s∈S

dθ
∑
a∈A

πθ

[∑
u∈VB

φθu(s, au)

]
· Qπθ

(s,a)} (13)

where Qπθ
is the stationary distribution with policy πθ. Since

the policy of different agents is independent, we further have

the gradient of R(πθ) with respect to parameter θu as

∇θuR(πθ) =
∑
s∈S

dθ
∑
a∈A

πθφθu(s, au)Qπθ
(s,a) (14)

Moreover, consider the following equation.∑
a∈A

πθφθu(s, au)V̂ u
πθ
(s,a�u)

=
∑

a�u∈A�u

⎡⎣V̂ u
πθ
(s,a�u)

∏
v 	=u

πv
θ

⎤⎦[ ∑
au∈Au

πu
θuφθu(s, au)

]
(15)

where A�u is the joint action space without agen-

t u. We discuss
∑

au∈Au πu
θuφθu(s, au) which is equal

to
∑

au∈Au πu
θu∇θu log πu

θu(s, au). Taking the derivative

of this formula we have
∑

au∈Au ∇θuπu
θu(s, au). Since∑

au∈Au πu
θu(s, au) is always equal to 1, we have

∇θu

∑
au∈Au

πu
θu(s, au) = 0 (16)

Thus, the equation (15) is equal to 0. Theorem 1 is proved.

From Theorem 1, we know that if each agent has an

unbiased estimate of the global action-value function Q(s,a)
or advantage function A(s,a), they can calculate the policy

gradient with score function φθu(s, au). This motivates us to

design an algorithm that can get consensus reward and estimate

policy function well for each agent. Next, we will focus on

the proposed MAAC algorithm and its implementation.

B. Multi-Agent Actor-Critic Algorithm

According to (10a) and (11), the unbiased estimate of

action-value and advantage functions require global reward

{rut }u∈VB information. However, the distributed agents only

have their local reward function rut which may lead to inac-

curate estimation. To solve the problem, we let each node v
share its agents’ reward with its neighbors on the network.

We denote the sharing reward of node v at time t as r̂vt . In

this way, the agents can reach a consensual estimate of action-

value function which further improves the policy of each agent

[34]. The MAAC algorithm is stated as Algorithm 1 and we

describe it from the agent u ∈ VB perspective next.

As the algorithm shows, we set the non-negative stepsize

βφ and βθ and the initial parameter θut of the parameterized

function πθu for each agent u. The architecture of the proposed

solution is illustrated in Fig. 3. In every time slot t, the

Algorithm 1: Multi-agent Actor-critic Algorithm

Input: the nonnegative stepsizes βθ and βφ; random

θut , ∀u ∈ VB; initial state s0 of the system; initial

policy πu
θu
0
(s0, a

u) and action au0 , u ∈ VB.

1 while t ∈ T do
2 foreach Agent u ∈ VB do
3 obtain the current joint state st
4 calculate the local reward r̂ut based on (3);

5 /*get routing action based on local policy*/

6 aut+1 ← πu
θu
t
(st, ·) and execute routing action;

7 /*complete the routing*/

8 the last-hop agent inform the on-path agents

whether the routing is successful;
9 end

10 foreach Node v ∈ V do
11 /*calculate the reward of node*/

12 r̂vt ← 1
|V(v)|

∑
u∈V(v) r̂

u
t , where u ∈ V(v);

13 share r̂vt with one-hop neighbors based on the

network topology G(V, E);
14 /*consensus step*/

15 rvt+1 ← 1
|Nei(v)|

∑
i∈Nei(v) r̂

i
t

16 /*where |Nei(v)| is the number of neighbors*/

17 end
18 foreach Agent u ∈ VB do
19 /*critic step*/

20 Qt ← Qt−1 + E[rvt − 1
t

∑t
τ=1 r

v
τ ];

21 φu
t ← ∇θu log πu

θu
t
(st, a

u
t );

22 Au
t ← Qt −

∑
au∈Au πu

θu
t
(st, a

u,a�u, θut );

23 /*actor step*/

24 θut+1 ← θut + βθ ·Au
t · φu

t ;

25 end
26 end

Consumers will request specific live videos of CLS based on

their preferences. In our algorithm, each agent first obtains

the current CLS system states (the joint states) st from a

specific central CS. Based on equation (3), the agent calculates

the local reward r̂ut . Next, agent u obtains the local action

aut+1 according to the local policy πu
θu(st, ·) and executes the

flow routing. When routing is completed, the last-hop agents

shares the information of whether the routing is successful

with all agents over the routing path. When routing fails

(flow cannot reach the Consumer), such as in a loop path, the

nodes on the routing will get a negative reward. Next, each

network node will calculate the average reward of its agents

r̂vt = 1
|V(v)|

∑
i∈V(v) r̂

i
t which will be further shared with

its one-hop neighbors through the communication network

G(V, E). In order to reach a consensual reward, each network

node v will execute the consensus step by averaging the

neighbors’ reward r̂it, ∀i ∈ Nei(v) where Nei(v) is the

set of neighbor nodes for network node v. For each agent

u ∈ VB, in critic step, it calculate the action-value Qt based

on the average reward of its neighbors rvt and previous action-

value Qt−1. Then, the agents u update their score function

value φu
t and advantage function value Au

t based on the joint
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Fig. 3. The architecture of the proposed algorithm

states st, joint actions at and local policy πu
θu
t

. Note that,

πu
θu
t
(st, a

u,a�u, θut ) represents the action-value function with

the condition a�u and local policy πu
θu
t

. After that, the agents

execute the Actor step and update the policy parameter θut+1

based on the values of score function and advantage function.

Distributed Implementation: The MAAC algorithm con-

sists of three phases. The first phase is the routing action

selection of each agents which needs the global system state

s from a central server and local policy πu
θu . For the second

phase, the network nodes only require one-hop reward infor-

mation exchange to reach a consensus of global reward. In

addition, for each agent u in phase three, it needs the joint

states s and joint actions b to calculate the value of score

function and advantage function respectively. Since the agents

obtain the joint states in the first phase, the agents only need

exchanging information with the nodes on the routing path

to get the joint action. Although the state information needs

to be maintained by a central server, the reward function and

the policy are local and can be considered as a decentralized

solution in MARL [25]–[27], [34], [35]. Hence, the MAAC

algorithm can be deployed in a distributed manner with only

joint states s and joint actions a information sharing. The

space complexity and time complexity of MAAC are O(EB)
and O(VB) where |EB| and |VB| are the number of virtual

links and the number of virtual nodes respectively. This shows

that the complexity of the algorithm increases linearly with the

scale of CLS system, which is scalable. To prove the feasibility

of the MAAC algorithm, we further evaluate the bandwidth

cost of signalling and compare it with those of two state-of-

the-art solutions [11], [16] in Section V.

V. PERFORMANCE EVALUATION

In this section, we introduce the experimental scenario and

parameter settings. Then we use single-agent reinforcement

learning as benchmark and analyse the numerical results of

our proposed decentralized algorithm. Finally, we evaluate

the performance of our solution in a prototype system and

compare it with Edge-Cloud (EC) cooperative solutions [11]

and Cloud-Crowd (2C) solutions [16].

A. Experiment Setup

We conduct a series of numerical simulations to validate

the convergence and optimality of the MAAC algorithm and

realise a prototype system based on an open-source framework

TABLE I
BANDWIDTH REQUIREMENT AND TRANSCODING COST

resolution
1080p
60fps

1080p
720p
60fps

720p 480p 360p

bandwidth
(Mbps)

5.86 4.45 2.75 1.93 1.10 0.52

transcoding
(vCPU use)

454% 333% 210% 142% 81.6% 50.5%

D
egree D

istribution of N
odes

Fig. 4. The topology diagram of the large-scale CLS system

srs [38] for further validation of service performance. To

better evaluate the effectiveness of our solution, we use a real-

world dataset [39] that was crawled from the official APIs

[40] to reconstruct a more realistic evaluation environment.

The dataset contains trace records of more than 1.5 million

broadcasters and 9 million streams from Feb. 1st to 28th, 2015.

Each trace records every 5 mins and includes stream ID, source

resolution, stream start/end time, the number of viewers, and

so on. Since most broadcasters with too few viewers often have

small variations in the number of their audience, we selected

the stream traces with more than 1000 concurrent viewers as

driving data to generate requests for our numerical simulation.

To evaluate the numerical performance of our MAAC al-

gorithm, we used Inet [41], an open-source communication

network generators, to generate a fully connected Internet

topology with 5000 nodes, as shown in Fig. 4. We set the

node with the highest degree (1922) as the central server and

the nodes with a degree of over 50 as CSs. In addition, we

set as ESs the nodes with degrees greater than 20 and less

than 50 and set about 4390 nodes with degrees less than 20

as amateur broadcasters and viewers. CSs are connected with

each other by 300Mbps links and are connected to ESs via

100Mbps links. The viewers and broadcasters connect to the

servers (CSs or ESs) through a link with bandwidth ranging

from 1Mbps to 10Mbps. The bandwidth of links between

the viewers is set to 10Mbps. We consider that the ESs

have sufficient computing resources, the maximum computing

resources unit of ESs is 20, and the viewers’ resource is set

to 1. We set the number of CLS channels to 100, and each

channel has six video resolutions. According to [11], we set

up the requirements of bandwidth and transcoding cost of

different resolution as shown in Table 1, which are measured

by Twitch’s official video statistic tool and AWS c4.8xlarge

instance, respectively.

The initial available capacities of bandwidth c(u,v) and

computing cu for ESs and viewers are uniformly sampled

in the range (0, cmax]. Besides, we set the parameters as

follows: βθ = βφ = 0.01, β = 0.5, θu0 ∈ (0, 1) with

uniform distribution and w(u,v) = 3wu = 3, ∀u, v ∈ V . We
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Fig. 5. Comparison of main theoretical results. (a) The optimality and convergence of globally averaged reward; (b) The convergence of local averaged reward
of different agents (1, 100, 200, 1000, 5000); (c) The convergence of globally averaged resources cost; (d) the resources cost of different agents

(a) Averaged Throughput (b) Averaged Transcoding Cost (c) Averaged Transmission Cost (d) Control Overhead

Fig. 6. Comparison of (a) averaged throughput, (b) averaged transcoding cost, (c) averaged transmission cost and (d) signalling overhead of control message
with three (Central, EC, 2C) solutions.

let the parameterized function of policy πu
θu(s, au) follow the

Boltzman policy.

πu
θu(s, au) =

exp
(
λ�
auθu

)∑
bu∈Au exp

(
λ�
buθ

u
) (17)

where λ�
au is the feature vector for a specific action of agent

u. The dimension of the feature vector is the same as θu, and

both are related to the dimension of the action space for agent

u. Thus, we have the form of the score function for agent u.

φθu(s, au) = λs,au −
∑

bu∈Au

πu
θu(s, au)λs,bu (18)

B. Evaluation Results

We consider a centralized reinforcement learning approach

with global information as baseline and further compare the

performance of throughput and resource-saving with two state-

of-the-art solutions in a large-scale CLS system. Central
approach is the benchmark, which has only one agent with

global reward and policy functions. In each time-slot, the

agent obtains a joint action (route) based on system state and

global policy function, and then update the parameters θ of the

policy function according to the global reward. EC solution

[11] employs a novel deep neural network based algorithm

to maximize the personalized QoE by selecting an efficient

transcoding-delivery path over cloud-edge infrastructure for

each viewer. 2C solution [11] leverages ubiquitous crowd

devices to assist the online video transcoding. It lets the

regional data center allocate the transcoding tasks to the crowd

and collect the transcoded data from viewers.

As shown in Fig. 5, we first conduct some numerical

studies to verify the optimality and convergence of the MAAC

algorithm and compare it with Central. We see from Fig. 5 (a)

that, both solutions converge to the optimal averaged reward

within around 250 and 1000 time-slots, respectively. This

shows that our method can achieve centralized performance

with an acceptable expense of convergence. Fig. 5 (b) presents

the reward convergence of different agents (1, 100, 200, 1000,

5000). We can see that all the agents converge to the same

value which is equal to the optimal reward. This proves

that the consensus scheme is convergent and can provide an

unbiased estimate of global reward. Next, we analyze the

global averaged resources cost and individual resource cost

of agents. Note that, since the agents play different roles

(e.g. Consumer, Transcoder) in the CLS system, the time-slot

to reach the stable phase varies for different nodes. Among

them, nodes 1, 100 and 200 are the CSs or ESs which are

often used as Transcoders, so they consume more resources.

Besides, nodes 1000 and 5000 are Providers and Consumers,

respectively so they spend a small number of resources. The

results are shown in Fig. 5 (c) and (d), respectively.

We compare the proposed MAAC algorithm with Central,
EC and 2C solutions on throughput, resources saving and

control overhead in different system scale. In Fig. 6 (a), as the

number of concurrent viewers grows, the averaged throughput

of the four solutions decreases and our solution has the highest

throughput compared to EC and 2C. Fig. 6 (b) and (c) present

the averaged transcoding and transmission cost. By leveraging

computing resources of crowd, our solution and 2C have good

scalability in terms of transcoding resources cost. In contrast,

EC only uses resources of CSs and ESs, so as the number

of users increases, the averaged transcoding overhead grows

faster. Besides, compared with 2C, our solution has better

performance in terms of saving bandwidth. Since 2C requires

the regional data center to frequently deliver content to viewers

for cooperative transcoding, this brings a lot of traffic to the

CLS system. To prove the feasibility of the MAAC algorithm,

we evaluate the overall bandwidth cost of signalling with EC
and 2C. In our method, the action information exchange on

the delivery path and global state distribution is required. In

EC, the signalling overhead is mainly caused by the commu-
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Fig. 7. The topology diagram of the prototype system

nication of workload status between different servers (CSs and

ESs) and gathering of playback information of all viewers. In

2C, the regional data center needs to maintain the viewing state

of all crowd devices and allocate the transcoding task, which

requires monitoring the viewers’ status continuously. Fig 6 (d)

shows how our method has the lowest control overhead among

the three solutions.

Fig 7 shows the prototype system built. It includes one

broadcaster, three CSs, three ESs, one cluster of fixed viewers

and two clusters of mobile viewers. We rented ecs.g5.2xlarge

(Intel Xeon Platinum 8163, 2.5Ghz eight core, 32GB memory)

of aliyun as CSs. Further, we used three servers (Xeon Bronze

3104, 1.7Ghz eight core, 32GB memory) to deploy ESs and set

up four virtual machines (Intel Core i7-7700k, 4.2Ghz dual-

core, 4GB memory) as the cluster of fixed viewers through

VMware. Also, we used the python package psutil [42] to get

the resource usage of Linux server, including CPU utilization

(%) and import/export bandwidth (kbps) of CS, RSs and ESs.

All of our experiments were conducted on CentOS 7. We used

yasea [43] (an RTMP live streaming client for Android) to

push the streaming from the broadcaster (HUAWEI Nova 6

5G) to CS through the 5G network. We let the broadcasters

upload the content to CSs 1 through Real-Time Messaging

Protocol (RTMP). Once the viewers request livecast services,

the request is captured by the ESs and then sent to the CSs

1. Further the CSs and ESs route the RTMP flow from CSs

1 to viewer based on their well trained policy πθ(s, a). In

our prototype system, the ESs and CSs used ffmpeg [44] to

convert the RTMP streaming into multi-resolution. In addition,

the EC solution first selected a transcoding delivery path, and

then dynamically performed allocation of the transcoding task

according to the workload of CSs and ESs on the path. In the

2C solution, the CSs and ESs offloaded the transcoding tasks

to the fixed viewers and then collected transcoded content to

service the mobile viewers.

From Fig. 8 (a), we can observe four indicators of MAAC

EC and 2C based on the prototype-based testing. MAAC

maintains the highest averaged throughput and the lowest

transmission delay from broadcaster to viewer from the three

solutions. In addition, we monitored the CPU usage and input

and output bitrate of all servers. The overall transcoding cost

of MAAC is about 12.3GHz which saves CPU usage by about

20% and 10% in comparison with EC and 2C, respectively.

The average bandwidth cost of MAAC is similar to that of EC,

but better than that of 2C. Moreover, we have also analyzed

some metrics of QoE in livecast. We considered four indicators

including start-up latency, stalling rate, playback resolution

Fig. 8. The experiment results of (a) system states and (b) QoE performance.

and buffering ratio/time. During the experimental period, we

let servers request random RTMP streams from each other to

simulate network cross-traffic. We conducted an uninterrupted

CLS experiment and got the results shown in Fig. 8 (b). We

found that our solution can dynamically adjust the transcoding

delivery path when the CLS system states changes. Compared

with the other solutions, our method reduced the start-up delay

by 12.5% and stalling rate by 17%, and provided 20% and

25% improvements in playback bitrate and buffering time.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a novel Augmented Graph Model for

large-scale CLS systems, which cleverly combines transcoding

and delivery by adding virtual nodes and links based on

the network topology. With the help of AGM, we trans-

formed the complex joint resource optimization problem of

computing and transmission into a network routing problem.

We further formalized the network routing problem which

jointly considers the resource cost and service performance.

To meet scalability requirements of CLS, we proposed an

innovative multi-agent reinforcement learning solution which

enables each agent in the CLS system has its own local reward

function and routing policy. We further designed a distributed

multi-agent actor-critic algorithm based on policy gradient to

overcome the drawbacks of Q-learning as mentioned above.

Our algorithm achieves only linear complexity with respect

to the increase in the number of virtual nodes and links.

Thorough simulation and prototype system-based testing have

verified the performance of our solution in comparison with

state-of-the-art alternative approaches. Compared with two

mainstream solutions, the results show that our approach

provides a significant improvement in terms of both saving

resources and improving service performance. Future work

will address the challenge and deploy our algorithm on a CLS

platform to verify its commercial benefit in a real environment.

It is hoped that our solution can efficiently serve a large CLS

system and enable high-quality live video services.
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