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Abstract—Bi-typed multi-relational heterogeneous graph (BMHG) is one of the most common graphs in practice, for example,
academic networks, e-commerce user behavior graph and enterprise knowledge graph. It is a critical and challenge problem on how to
learn the numerical representation for each node to characterize subtle structures. However, most previous studies treat all node
relations in BMHG as the same class of relation without distinguishing the different characteristics between the intra-type relations and
inter-type relations of the bi-typed nodes, causing the loss of significant structure information. To address this issue, we propose a
novel Dual Hierarchical Attention Networks (DHAN) based on the bi-typed multi-relational heterogeneous graphs to learn
comprehensive node representations with the intra-type and inter-type attention-based encoder under a hierarchical mechanism.
Specifically, the former encoder aggregates information from the same type of nodes, while the latter aggregates node representations
from its different types of neighbors. Moreover, to sufficiently model node multi-relational information in BMHG, we adopt a newly
proposed hierarchical mechanism. By doing so, the proposed dual hierarchical attention operations enable our model to fully capture
the complex structures of the bi-typed multi-relational heterogeneous graphs. Experimental results on various tasks against the
state-of-the-arts sufficiently confirm the capability of DHAN in learning node representations on the BMHGs.

Index Terms—Bi-typed Multi-relational Heterogeneous Graph, Graph Learning, Dual Hierarchical Attention Networks, GNNs

✦

1 INTRODUCTION

B I-TYPED multi-relational heterogeneous graph (BMHG) typ-
ically consists of two different types of nodes and multiple

intra-type/inter-type relations among them, which are ubiquitous
in the real-world scenarios [1], such as academic social networks
[2], [3], e-commerce user behavior graph [4], and enterprise
knowledge graph [5], [6]. These graphs have rich and valuable
heterogeneous information that is worth deep mining. For more
clarity, we formally define the BMHG in Definition 1. Without
loss of generality, let us take OAG dataset [3] as an example
of the BMHG, which consists of two types of nodes, i.e. au-
thors and papers, and multiple relationships, i.e. colleague, cite,
is ordinary author of, etc, as shown in Figure 1.

Definition 1. Bi-typed Multi-relational Heterogeneous Graph.
A bi-typed multi-relational heterogeneous graph is defined as a
connected graph BMHG = (V,L, T ,R). V denotes the node
set, and L denotes a link set. They are associated with two
functions: (i) a node type mapping function φ : V → T , |T | = 2.
V = {V1,V2}, V1 ∩ V2 = ∅. Each node v ∈ V belongs to
one particular node type in the node type set T : φ(v) ∈ T .
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Fig. 1. A toy example of bi-typed multi-relational heterogeneous graph
(BMHG) in the academic networks. This graph consists of two types
of nodes, i.e. authors and papers. Their links could be divided into
two classes: (1) node intra-type relations, such as ”colleague” between
authors, ”cite” and ”same venue” between papers; (2) node inter-type
relations, such as ”is important author of ”, ”is ordinary author of ”.
Table 2 reports a detailed statistics of the graph.

(ii) a link class mapping function ψ : L → R . ∀l1, l2 ∈ L,
ψ(l1) ∈ Rintra and ψ(l2) ∈ Rinter denote the node intra-type
relationships and the node inter-type relationships, respectively.
BMHG has multiple relationships (i.e., |Rinter| > |T | − 1 > 0
and |Rintra| > 1).

In this paper, we focus on how to encode the bi-typed multi-
relational heterogeneous graphs, providing an effective and flexi-
ble way to use their structural knowledge. The ultimate goal is to
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TABLE 1
Comparison between several SOTA methods and the proposed model in terms of nodes heterogeneity and edges heterogeneity.

Models Graph Heterogeneity

Name Main ideas Bi-typed
|T| = 2

inter-type multi-relations
|Rinter| > 1

intra-type multi-relations
|Rintra| > 1

GCN [7] • Average message passing % % %

GAT [8] • Attention based message passing % % %

RGCN [9] • Multi-relations
• Hierarchical weighting message passing % % !

GTN [10] • Multi-relations
• Self-adaption weighting message passing % ! %

HAN [11] • Meta-path relations
• Hierarchical attention based message passing % ! %

HetGNN [3] • Heterogeneous features of nodes
• Attention based message passing ! % %

HGT [12]
• Self-attention based message passing
• Node-balanced graph sampling
• Time encoding

% ! !

HGConv [13] • Multi-relations
• Hierarchical attention based message passing % ! %

ie-HGCN [14] • Meta-path based relations
• Hierarchical attention based message passing % ! %

DHAN (Ours) • Distinguish inter-type relationship and intra-type relationship
• A newly proposed global-local hierarchical mechanism ! ! !

pursue perfect low-dimension distributed representations for nodes
and relations mainly according to heterogeneous information in
the BMHG. The learned results are essential for the inference tasks
over graph, such as link prediction [15], [16], node classification
[17], [18], node clustering [1] and graph classification [19], [20].

Previous heterogeneous graph learning studies attempt to
adopt the advanced Graph Neural Networks (GNNs) to learn
heterogeneous graph while preserving the heterogeneous struc-
tures [3], [11], [12]. However, most of the existing methods
usually ignore the distinguished characteristics between the node
intra-type relations and inter-type relations in the bi-typed multi-
relational heterogeneous graphs, which inevitably leads to graph
significant structural information loss.

To solve the problem, we propose a novel Dual Hierarchical
Attention Networks (DHAN) utilizing the intra-type and inter-
type attention-based encoder under a hierarchical mechanism.
The former encoder model aggregates intra-node information
(Section 3.2), while the latter encoder captures inter-node in-
formation (Section 3.3). What’s more, to learn comprehensive
node representations based on the BMHG, we adopt a newly
proposed hierarchical mechanism. Equipped with those modules,
the proposed dual hierarchical attention operations endow our
model with ability to fully capture the complex structures of the
bi-typed multi-relational heterogeneous graphs. The comparison
between previous existing methods with our proposed DHAN in
terms of nodes heterogeneity and edges heterogeneity is shown in
Table 1.

To evaluate the effectiveness of our proposed model, we gener-
ate three different kinds of datasets according to the popular Open
Academic Graph (OAG) [3] with various paper citation thresholds,
including OAG1Y, OAG2Y and OAG10Y. We conduct extensive
experiments on these datasets with author disambiguation and pa-
per classification task against the state-of-the-art methods, which

sufficiently demonstrate the better capability of our proposed
DHAN in learning node representations in the bi-typed multi-
relational heterogeneous graphs.

The contributions of our work are summarized as follows:

• In this paper, we focus on embedding the bi-typed multi-
relational heterogeneous graphs. To the best of our knowl-
edge, no one attempts to deal with the task before. This
paper is expected to further facilitate the bi-typed het-
erogeneous graph-involved applications, such as academic
network mining [12], recommendation system [21], enter-
prise knowledge graph embedding [22], etc.

• To tackle the bi-typed multi-relational heterogeneous
graph learning task, we propose a novel dual hierarchical
attention networks (DHAN). Specifically, we equipped
DHAN with the intra-type and inter-type attention net-
works under a newly proposed hierarchical mechanism,
which enables the proposed model to sufficiently capture
the complex structural knowledge in the BMHG.

• We conduct extensive experiments to evaluate the per-
formance of the proposed model. The results demon-
strate the superiority of the proposed model against the
SOTA methods for learning node representations on bi-
typed multi-relational heterogeneous graphs. The source
code and data of this paper can be obtained from:
https://github.com/superweisp/DHAN2022.

2 RELATED WORK

2.1 Graph Embedding

Recent years have witnessed a growing interest in developing
graph learning algorithms [23] since most real-world data can
be represented by graphs conveniently. Classical graph learning
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methods aim to reduce the dimension of graph data into low-
dimensional representations (i.e., graph embedding), such as the
linear method PCA [24] and the non-linear method LLE [25].
Inspired by the basic idea from probabilistic language models such
as skip-gram [26] and bag-of-words [27], some random walk-
based methods are proposed to learn node representations, such
as DeepWalk [28] and its advanced extension Node2Vec [23].
Current methods pay attention to random walk on spatio-temporal
graphs [29], [30] and its multiscale nature [31]. There are also
some matrix factorization-based methods for graph learning tasks
[32], [33]. We refer the readers to [34] for more surveys on graph
learning literature.

However, the above mentioned methods only consider the
structural information of graph, and could not take node attribution
into consideration.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) develop a deep neural network
to deal with arbitrary graphs for representation learning [12], [35],
[36], [37], [38]. GNNs have been successfully applied to various
tasks over graphs [8], [39], such as graph classification [19],
[20], link prediction [15], and node classification [17], [18]. The
Graph Convolutional Networks (GCNs), as a representative GNN
model, generalize convolutional operation on the graph-structured
data [9], [40]. Graph Attention Networks (GATs) learn from the
underlying graph structure by incorporating attention mechanism
into GCNs [40], where the hidden representation of each node is
computed by recursively aggregating its local neighbors’ features,
and the weighting coefficients are calculated inductively with self-
attention strategy [41]. We refer the readers to [35] for more
references of GNNs.

Despite the success of the above methods, they are constrained
to perform only on homogeneous graphs, which thus could not
handle the rich information in heterogeneous graphs.

2.3 Heterogeneous Graph Neural Networks
Heterogeneous graphs contain different types of nodes and edges
[3], [11], [42], which have rich and valuable heterogeneous
information. Heterogeneous graph modeling methods are useful
for various task, such as short text classification [42], spam
review detection [43], conversation generation [44], sentiment
analysis [45]. To deal with heterogeneous graphs, Wang et al. [11]
proposed heterogeneous graph attention networks (HAN), which
mainly concentrate on the different meta-paths. Zhang et al. [3]
proposed HetGNN that uses specialized Bi-LSTM to integrate
the heterogeneous node attributes and neighbors. Busbridge et
al. [46] proposed RGAT by extending non-relational GATs to
incorporate relational information, but with poor performance. Hu
et al. [12] proposed heterogeneous graph transformer (HGT) to
model web-scale heterogeneous graphs, which considers graph
heterogeneity, dynamic nature and efficient training for large-scale
graph. Jin et al. [47] proposed GIAM to distinguish one-hop and
multi-hop meta-paths in the propagation process. Some works
also concentrate on special network structure, such as text-rich
networks [48] and bipartite graphs [49]. Specifically, previous
works utilized matrix-based methods to apply bipartite graphs
on graph clustering [49], [50], graph partitioning [51] and graph
matching [52]. Nowadays, the researchers model bipartite graphs
as low-dimension representations and apply them on more tasks,
such as graph generation [53] and recommender system [54].

Despite their success, to the best of our knowledge, no one
focuses on bi-typed multi-relational heterogeneous graph learning.
Previous methods usually ignore the heterogeneous characteristics
of inter-type and inter-type relationships of bi-typed nodes in
BMHG. Different from the conventional heterogeneous GNNs,
this paper concentrates on the bi-typed heterogeneous graph learn-
ing task and attempts to design dual hierarchical graph attention
networks to learn comprehensive node representations. Table 1
summarizes the key advantages of our model in terms of modeling
graph heterogeneity, compared with a variety of state-of-the-art
heterogeneous GNNs models.

3 METHODOLOGY

This section introduces the framework of the overall architecture,
as shown in Figure 2. (1) Node Representation Initialization. We
firstly initialize paper node representations through a pre-trained
XLNet with their titles. Then we calculate author node represen-
tations by averaging their corresponding paper nodes’ represen-
tations. (2) Dual Hierarchical Attention Networks (DHAN). The
proposed DHAN consists of two submodules: intra-type attention-
based encoder and inter-type attention-based encoder, which aim
to fully capture the structural knowledge of BMHG. To model
node multi-relational information in BMHG, we will introduce a
newly proposed hierarchical mechanism, as shown in Figure 3.
Next, we gives the analysis of BMHG, and the details of DHAN.

3.1 Analysis of the Properties of BMHG
The properties of BMHG include two aspects: (i) Bi-typed prop-
erty. Different from previous conventional heterogeneous graph,
BMHG contains two types of relationships (i.e., intra-type rela-
tionships and inter-type relationships), which describe completely
distinct connections between nodes. For example, in academic
network, an author can be with several intra-type relationships
(i.e., colleague, APA1 and APA2 relationships), which describe
the social connections of the author, while the inter-type relation-
ships (i.e., is important author of and is ordinary author of )
describe the contributions of the author to papers. (ii) Multi-
relational property. On the one hand, the importance of each
type of relationships is locally heterogeneous [55] with respect
to different target nodes. That is to say, different nodes assign
unequal weights to same relationships. On the other hand, the
importance of different relationships has similarity (i.e., general
pattern), which can only be captured from a global view [11].
Thus, considering global pattern avoids local optimal and noisy
links.

The motivation of the proposed model is twofold accordingly:
(i) To model the bi-typed property of BMHG (i.e., the distinctions
of intra-type relationships and inter-type relationships), we thus
utilize Intra-type Attention-based Encoder (see Section 3.2) and
Inter-type Attention-based Encoder (see Section 3.3) to model
these two distinct types of relationships respectively. (ii) To model
the multi-relational property of BMHG, we attempt to take both
global weights and local weights into consideration when aggre-
gating relationship semantic information with respect to different
target nodes.

3.2 Intra-type Attention-based Encoder
The intra-type attention networks aim to learn the node embed-
dings by aggregating node information from their same type of
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ij under

a specific type of relation Φk. Then relation representations h
Φk
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aggregated by weighting and summing the target node’s Φk based
neighbors’ information. (2) Relation-level aggregation firstly assigns re-
lation importance utilizing attention mechanism based on target node
embedding and relation representations. Then relation representations
are aggregated to get comprehensive neighbor information zi with final
importance, which consists of global relation weight β

Φl
G and local

relation weight βΦk
i . .

neighbors, as shown in Figure 2 (a). Given a set of nodes with
the same type Va ∈ {V1,V2}, and a node pair (vi, vj)(∈ Va)
that are connected via node intra-type relationship Φk ∈ R(a)

intra,
we firstly perform transformation based on node type to project
original node representation into Rd latent space as follow:

H′(a) = W(a)H(a), (1)

where W(a) ∈ Rd×d′
is a trainable weight matrix related to a

corresponding node type. H(a) ∈ R|Va|×d and H′(a) ∈ R|Va|×d′

are the original and transformed node representations, respectively.
For node vi, different types of intra-type relationships con-

tribute different semantics to its embeddings, and so do different
nodes with the same relationship. Hence, we then employ attention
mechanism here in node-level and relation-level to hierarchically
aggregate signals from the same types of neighbors to target node
vi. We first perform self-attention on the nodes to formulate the
importance eΦk

ij of a specific-relation based node pair (vi, vj) as
follows:

eΦk
ij = attlocal(h

′
i,h

′
j ; Φk) = LeakyRelu(a⊤Φk

· [h′
i∥h′

j ]) ,
(2)

where h′
i ∈ Rd′

,h′
j ∈ Rd′

are transformed hidden features
of the node vi and vj , respectively. ∥ denotes the concatenate
operation. a⊤Φk

∈ R2d′×1 is the shared node-level attention weight
vector under relation Φk. LeakyReLU is a nonlinearity activation
function.
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Based on Eq. (2), we calculate the eΦk
ij for all nodes

vj ∈ NΦk
intra(vi), where NΦk

intra(vi) denotes specific relation-based
neighbors of vi. To make importance easily comparable across
different nodes, we normalize them across all choices of vj using
the softmax function:

αΦk
ij = softmaxj(e

Φk
ij ) =

exp (eΦk
ij )∑

vp∈NΦk
intra (vi)

exp (eΦk
ip )

, (3)

Then, the embedding hΦk
i of node vi under given relation

Φk is calculated by aggregating its intra-type neighbors’ projected
representations with the corresponding coefficients as follows:

hΦk
i = LeakyRelu

(
NormΦk

( ∑
vj∈NΦk

intra (vi)

αΦk
ij · h′

j

))
, (4)

where NormΦk
denotes relation-specific layer normalization op-

eration. Since the attention coefficient αΦk
ij is computed for a

particular relationship, hΦk
i is semantic-specific and capable of

capturing one kind of semantic information.
To learn more comprehensive node representations, we fuse

different relation-specific aggregated information of nodes. Dif-
ferent from previous methods that either consider global weights
[11] or local weights [13] of relationships, we take advantage of
both of the two factors in relation-level attention, considering both
the heterogeneity with regard to different nodes and the common
information that a type of relation has among all nodes. Firstly,
we calculate the local importance gϕk

i of relation Φk with respect
to node vi as follows:

gΦk
i = q⊤

(
h′
i∥h

Φk
i

)
, (5)

where q ∈ R2d′×1 is a trainable parameter. Then, we implement
the softmax function to normalize the node-relation specific local
importance across different relations.

βΦk
i = softmaxk(g

Φk
i ) =

exp (gΦk
i )∑

Φl∈R(a)
intra

exp (gΦl
i )

, (6)

where βΦk
i indicates how important relation Φk is for node vi,

which measures local importance of intra-relation Φk. Secondly,
to prevent model from local optimum and alleviate effects of noisy
links, we design a relation global importance βΦl

G , which denotes
how important intra-type Φl is for all nodes vi ∈ Va. Finally,
as shown in 3, we fuse different relation-specific aggregated
information of nodes in both local and global view, as follow:

zi =
∑

Φl∈R(a)
intra

(
tβΦl

G + (1− t)βΦl
i

)
· hΦl

i , (7)

where zi ∈ Rd′
is the learned representation of node vi, which

contains global and local information. hΦl
i denotes aggregated

information for node vi under intra-type relation Φl. t is a smooth
parameter to balance the global and local importance of intra-type
relation Φl. β

Φl

G and t can be learned from training.

3.3 Inter-type Attention-based Encoder
Different from the above intra-type attention networks, the inter-
type attention-based encoder aims to deal with the interaction
between different types of nodes. We set v(1)i ∈ V1 and v(2)j ∈ V2.

z
(1)
i , z

(2)
j are the learned representations of the node v(1)i and v(2)j

by intra-type attention networks, respectively.
We calculate the node-level importance cΦm

ij for all nodes
vj ∈ NΦm

inter (vi), where NΦm
inter (vi) denotes the neighbors of node

vi under specific inter-relation Φm. We normalize them across all
choices of vj using the softmax function:

cΦm
ij = attnode(zi, zj ; Φm)

= LeakyRelu(a⊤Φm
· [W(1)zi∥W(2)zj ]) ,

(8)

γΦm
ij = softmaxj(c

Φm
ij ) =

exp (cΦm
ij )∑

vk∈NΦm
inter (vi)

exp (cΦm

ik )
, (9)

where W(1),W(2) ∈ Rd′×d′
are two type-specific matrices to

map their features zi, zj into a common space. aΦm
∈ R2d′

is a
trainable weight vector. Then, as shown in Figure 2, the relation
representation of node v(1)i can be aggregated by its different types
of neighbors’ representations with the corresponding coefficients
as follows:

zΦm
i = LeakyRelu

(
NormΦm

( ∑
vj∈NΦm

inter (vi)

γΦm
ij W(2)zj

))
,

(10)
where NormΦm indicates layer normalization operation related to
the inter-type relation.

Similar to the above hierarchical attention, all relation repre-
sentations are fused to get the final representations:

fΦm
i = q̃⊤

(
zi∥zΦm

i

)
, (11)

ϵΦm
i = softmaxm(fΦm

i ) =
exp (fΦm

i )∑
Φn∈Rinter

exp (fΦn
i )

, (12)

where q̃ ∈ R2d′
is a projection vector. fΦm

i denotes the impor-
tance of relation embedding zΦm

i related to node v(1)i . We apply
the the softmax function to make relation importance comparable
within inter-type relations. The representation ui of node vi us
obtained by fusing these relation-specific representations.

ui =
∑

Φm∈Rinter

ϵΦm
i · zΦm

i , (13)

where Rinter indicates the set of relations among different types
of nodes (i.e., node inter-type links).

In inter-type hierarchical attention, the aggregation of different
nodes’ embedding is seamlessly integrated, and they are mingled
and interactively affected each other, as shown in Figure 2 (b).

3.4 Weighted Residual Connection
For both intra-type encoder and inter-type encoder, we use
weighted residual connection and layer normalization to alleviate
over-smooth in practice.

z̄i = Norm
(
λσ(zi) + (1− λ)hi

)
, (14)

ūi = Norm
(
λ̃σ(ui) + (1− λ̃)zi

)
, (15)

where λ and λ̃ are hyperparameters.
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3.5 Optimization

For node classification tasks, such as paper-venue classification
and paper-field classification in OAG dataset, we predict labels
based on nodes’ final representations. For link prediction task
(i.e., author disambiguation), we predict whether connections exist
based on node pairs’ similarities by element-wise product of
representations.

We train our model by minimizing the cross-entropy loss.
Inspired by [56], we promote the training efficiency by adding
Temperature T in the learning.

L = −
∑
i∈YL

yi log(
ỹi
T
) , (16)

where YL is the set of labeled nodes. yi and ỹi are the ground
truth and the predicted label for node i, respectively.

The time complexity of DHAN can be determined as: O
((
|R|·

|V|+ |L|
)
D2

)
, where |R| denotes the total number of intra-type

and inter-type relationships, |V| denotes the total number of the
two types of nodes, |L| denotes the total edge number and the D
denotes the dimension of the representation. The linear complexity
with respect to node number ensures the scalability of the model
that it can be applied on lager scale datasets.

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Datasets

We generate three different kinds of datasets by extracting
different sub-graphs from the popular Open Academic Graph
(OAG) dataset [3] with various paper citation thresholds, including
OAG1Y, OAG2Y and OAG10Y. In OAG1Y, we only retain the
papers which are cited more than once a year. In OAG2Y and
OAG10Y, we loose the time constraints to 2 years and 10 years,
respectively. They contain two types of nodes (i.e., authors and
papers), and several preliminary links including (author, col-
league, author), (author, is important author of, paper), (author,
is ordinary author of, paper), (paper, cite, paper). Note that the
“important” authorship indicates an author is the first or second
author of a paper, and the “ordinary” authorship indicates an
author is not the important author of a paper. The basic statistics
of all datasets are included in Table 2. The intra-type relations
of authors include: colleague, APA1 and APA2. APA1 and APA2
indicate the co-authorship of important authors and ordinary au-
thors, respectively. The intra-type relations of papers include: cite,
rev cite, is same venue of, is same field of . The inter-type re-
lation between author and paper includes: is important author of
and is ordinary author of.

4.1.2 Baselines

To demonstrate the effectiveness of our proposed model DHAN,
we compare it with three types of SOTA baselines: (1) the
homogeneous graph neural networks which do not consider multi-
relationships between nodes, such as GCN, GAT; (2) the hetero-
geneous graph neural networks which take different relationships
into consideration, such as RGCN, HGT; (3) the heterogeneous
networks which implement a hierarchical mechanism to aggregate
different kinds of relations in graphs, such as HAN, HGConv.

Homogeneous models:

TABLE 2
Statistics of the datasets OAG1Y, OAG2Y and OAG10Y, which are
extracted from the popular Open Academic Graph [3] with various

citation thresholds.

Datasets OAG1Y OAG2Y OAG10Y

Bi-typed
nodes

#Papers 494,051 825,234 1,564,109
#Authors 480,575 734,451 1,266,569

Author
intra-relations

#Colleague 285,393,669 562,821,414 1,400,301,929
#APA1 369,973 600,344 1,074,851
#APA2 1,015,964 1,413,447 2,059,826

Paper
intra-relations

#Cite/Rev Cite 4,847,142 7,367,512 22,407,910
#Same Field 160,283,374,629 440,183,678,370 1,548,687,874,807
#Same Venue 273,272,355 619,484,732 1,929,963,113
#PAP1 3,022,137 5,966,848 13,450,631
#PAP2 4,973,945 9,042,142 17,648,847

Author-Paper
inter-relations

#Important author 800,061 1,306,953 2,372,890
#Ordinary author 661,250 1,019,506 1,687,184

Training data Period 2000 - 2015
Validation data Period 2015 - 2016

Testing data Period 2016 - 2019

• Graph Convolutional Networks (GCN) [7], [57]: a popular
model which simply averages neighboring nodes’ repre-
sentations in aggregation.

• Graph Attention Networks (GAT) [8]: a recent model
which takes attention mechanism to align different weights
to neighbors during the information aggregating process.

Heterogeneous models:

• Relational Graph Convolutional Networks (RGCN) [9]:
an advanced extension of GCN, which takes relation
information into consideration by giving different weights
for difference relationships.

• Heterogeneous graph neural network (HetGNN) [3]: a
multi-modal heterogeneous graph model which utilizes Bi-
LSTM to process multi-moding information, then applies
attention mechanism in heterogeneous information fusing.

• Graph Transformer Networks (GTN) [10]: a novel hetero-
geneous graph neural network based on GCN which up-
dates adjacent matrix of different relations during training
process.

• Heterogeneous Graph Transformer (HGT) [12]: a state-of-
the-art model which implements on heterogeneous graph
with different types of nodes and multiple relations.

Hierarchical models:

• Heterogeneous Graph Attention Network (HAN) [11]:
one of the earliest model which implements hierarchical
attention on graph neural network based on meta-path.

• Heterogeneous Graph Convolution (HGConv) [13]: an ef-
ficient model which utilizes hierarchical mechanism based
on different node types and different relations.

• interpretable and efficient Heterogeneous Graph Convo-
lutional Network (ie-HGCN) [14]: a SOTA model which
firstly implements object-level aggregation and then aggre-
gates type-level information based on different meta-paths.

4.1.3 Model Setting and Training Details
We implement DHAN with PyTorch and PyTorch Geometric
(PyG). We use a pre-trained XLNet [58] to initialize the paper
nodes’ representations. Then the author nodes’ initial representa-
tions are aggregated by averaging their published papers’ embed-
dings. We set the dropout rate of DHAN among {0.1, 0.2, 0.3,
0.4, 0.5} and the temperature T from {0.01, 0.05, 0.1, 1, 1.5, 10}.
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The ℓ2 regularization weight is set from {1e-4, 1e-3, 1e-2, 1e-1}.
For the paper field L1 task (PF L1), we add one more weighted
residual connection in inter-type aggregation process without
adding any new parameters. All models are trained with AdamW
optimizer with the Cosine Annealing Learning Rate Scheduler. For
all the baseline models and DHAN, we use 128 hidden dimension.
For each model, we run 200 epochs and choose the best which
has higher NDCG and lower loss compared with former training
processes on validation datasets in order to alleviate the overfitting
problem. To obtain the experimental results of all baselines, we run
official codes provided by the original papers. Finally, we report
the results of each model on the testing datasets.

4.1.4 Task Target

Based on the properties of BMHG, we conduct the following
experiments to analyze the proposed model’s ability in captur-
ing complex structure information among them. Specifically, we
perform node classification, link prediction and node clustering to
verify the model’s general representing ability with regard to both
supervised and unsupervised aspects. To illustrate that the learned
node embedding can capture the subtle difference among different
intra-nodes, we conduct node embedding visualization. Besides,
we conduct the interpretability experiment to analyze the proposed
model’s ability to capture structure information among inter-
nodes. Moreover, we perform variants analysis and ablation study
to demonstrate the sub-modules’ efficiency in learning both intra-
and inter-structure information among nodes. Finally, we conduct
parameter analysis to study the proposed model’s performance
under different hyper-parameters.

4.2 Classification and Link Prediction

4.2.1 Evaluation Protocol

We evaluate our model on three tasks, including author disam-
biguation (AD), paper-venue (PV), paper-field in L1 level (PF L1)
classification and paper-field in L2 level (PF L2) classification. In
the datasets, the fields of papers are divided into several hierarchi-
cal levels (such as Operating system/ file system), and lower level
means more detailed categories. In other words, L2 (such as ’file
system’) has much more categories than L1 (such as operating
system). The author disambiguation task could be treated as a link
prediction task which aims to predict the possible link between the
same name and their associated papers. Both of the paper-venue
and paper-field classifications are multi-classification problem. In
paper-venue classification, each paper belongs to only one venue,
while each paper may belong to several fields of L1 level and
L2 level in paper-field classification tasks. We adopt accuracy
(ACC), Normalized Discounted Cumulative Gain(NDCG) and
Mean Reciprocal Rank (MRR) as evaluation metrics.

4.2.2 Results and Analysis

The experimental results of the proposed model and SOTA base-
lines are reported in Table 3. We can observe from Table 3 that
our proposed DHAN outperforms all the baselines on all tasks
across most of metrics on all datasets. For instance, our model
improves the ACC, NDCG and MRR of author disambiguation
on OAG1Y from 0.6477 to 0.8343, 0.5394 to 0.7828, and 0.3479
to 0.6799 respectively comparing to the state-of-the-art model ie-
HGCN, which confirms the capability of DHAN in learning bi-
typed multi-relational heterogeneous graph.

Analysis. (1) Compared with homogeneous GNNs, i.e. GCN
and GAT, DHAN achieves significant and consistent performance,
which indicates that our proposed model can sufficiently capture
the heterogeneous information from the data. (2) Compared with
heterogeneous GNNs (i.e., RGCN, HetGNN, GTN and HGT), the
proposed model DHAN outperforms all baselines in link predic-
tion tasks on all datasets and indicators. This is mainly because our
model is specially designed for bi-typed multi-relational graphs.
Hence, it can sufficiently utilize interactions between two types
of nodes, which can not be well captured by general heteroge-
neous graph neural networks. Besides, the proposed model also
achieves comparable results in classification tasks on most of
datasets and indicators. The observation confirms that our model
is able to distinguish different relations delicately by utilizing
the hierarchical mechanism. (3) Compared with the conventional
hierarchical attention model HGConv and ie-HGCN, our model
performs better on all tasks in all datasets. Our model takes
advantage of the two typical hierarchical models by fusing relation
global information and local information. To be more specific,
HAN proposed to aggregate different types of relation information
with same global importance, which overlooks heterogeneity of
different nodes. HGConv aggregates relation information with
heterogeneous weight related to different nodes, which neglects
common information that a type of relation has among all nodes.
In contrast, our model overcomes their limits by incorporating
both the merits of relation global information as well as local
information. (4) In sum, we believe the better performance is
due to the better design of our model. First, DHAN can gain
improvements via taking both the node intra-type and inter-type
attention into consideration. Second, our model also uses an
efficient hierarchical attention mechanism to encode the bi-typed
multi-relational heterogeneous graph.

4.3 Node Clustering
We conduct node clustering based on the paper-venue task on
three datasets. Here, we first get node representations via feed
forward of each GNN. We them apply K-Means to implement
node clustering and evaluate the performance using NMI and
ARI based on their ground truth and predicted categories. Since
the results tend to be affected by initial centroids, to make
performance more stable, we repeat the former process 10 times
and report average results in Table 4. Experiments results show
that out model outperforms all baselines, e.g. on OAG1Y, DHAN
outperforms the SOTA model ie-HGCN with a margin as large
as 0.0277 on ARI. The results demonstrate the superiority of the
learned node representations.

4.4 Ablation Study.
To evaluate the contribution of different model components of
DHAN, we conduct an ablation study. We generate variants of
DHAN by adjusting the use of its model components and compar-
ing their performance on three tasks on OAG1Y. The three ablated
variants are as follows: (1) DHAN w/o dual operation, which
does not distinguish the node intra-type and inter-type relation, and
only takes one hierarchical attention. (2) DHAN w/o hierarchical
architecture, which deletes hierarchical architecture in both intra-
type and inter-type encoders. (3) DHAN w/o global attention,
which deletes the relation global attention.

Figure 4 shows the results of the variants on all three datasets,
from which we can observe that removing either dual operation
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TABLE 3
Classification and link prediction results.

Evaluation of different methods on three datasets.

Datasets Tasks Metrics GCN
[7]

GAT
[8]

RGCN
[9]

HAN
[11]

HetGNN
[3]

GTN
[10]

HGT
[12]

HGConv
[13]

ie-HGCN
[14] DHAN

OAG1Y

PV NDCG 0.2661 0.2750 0.2693 0.2880 0.2375 0.2680 0.2970 0.2885 0.2465 0.2995

MRR 0.1295 0.1391 0.1335 0.1508 0.1031 0.1300 0.1623 0.1502 0.1069 0.1643

PF L1 NDCG 0.7180 0.7271 0.7492 0.7227 0.6587 0.7408 0.7515 0.7476 0.7304 0.7532

MRR 0.6892 0.6905 0.7220 0.6916 0.6189 0.7088 0.7169 0.7179 0.6996 0.7213

PF L2 NDCG 0.3598 0.3678 0.4191 0.3817 0.3059 0.3910 0.4502 0.4209 0.3297 0.4512

MRR 0.3156 0.3300 0.4311 0.3593 0.2183 0.3725 0.4958 0.4403 0.2528 0.4960

AD
NDCG 0.7297 0.7915 0.7820 0.7497 0.6430 0.7403 0.8037 0.7715 0.7539 0.8222

MRR 0.6436 0.7241 0.7120 0.6693 0.5309 0.6567 0.7403 0.6982 0.6749 0.7651

ACC 0.4627 0.5678 0.5610 0.5002 0.3240 0.4800 0.6040 0.5406 0.5106 0.6394

OAG2Y

PV NDCG 0.2604 0.2780 0.2739 0.2899 0.2465 0.2569 0.2947 0.2862 0.1828 0.2969

MRR 0.1282 0.1445 0.1376 0.1553 0.1137 0.1200 0.1616 0.1496 0.0502 0.1629

PF L1 NDCG 0.7076 0.7271 0.7410 0.7384 0.6614 0.7284 0.7455 0.7438 0.7195 0.7520

MRR 0.6838 0.6985 0.7131 0.7069 0.6282 0.6905 0.7075 0.7139 0.6861 0.7177

PF L2 NDCG 0.3651 0.3737 0.4275 0.3882 0.3075 0.4000 0.4544 0.4265 0.3383 0.4558

MRR 0.3226 0.3427 0.4429 0.3629 0.2179 0.3955 0.4916 0.4391 0.2694 0.4925

AD
NDCG 0.6726 0.7783 0.7841 0.7509 0.6258 0.7167 0.8040 0.7797 0.6718 0.8332

MRR 0.5698 0.7073 0.7147 0.6716 0.5099 0.6260 0.7410 0.7093 0.5688 0.7796

ACC 0.3769 0.5539 0.5584 0.5073 0.2959 0.4330 0.5959 0.5513 0.3599 0.6554

OAG10Y

PV NDCG 0.2604 0.2718 0.2739 0.2598 0.2515 0.2317 0.2801 0.2655 0.2405 0.2816

MRR 0.1282 0.1399 0.1376 0.1225 0.1196 0.0971 0.1445 0.1287 0.1047 0.1476

PF L1 NDCG 0.7219 0.7300 0.7520 0.7169 0.6837 0.7339 0.7550 0.7489 0.7222 0.7530

MRR 0.6902 0.6950 0.7266 0.6834 0.6554 0.6953 0.7196 0.7188 0.6899 0.7197

PF L2 NDCG 0.3595 0.3641 0.4205 0.3768 0.3125 0.3892 0.3877 0.4189 0.3342 0.4556

MRR 0.3081 0.3184 0.4196 0.3385 0.2274 0.3679 0.3735 0.4214 0.2559 0.4868

AD
NDCG 0.6042 0.7201 0.7685 0.7169 0.5712 0.6804 0.7979 0.7659 0.6477 0.8343

MRR 0.4841 0.6326 0.6955 0.6284 0.4430 0.5807 0.7338 0.6923 0.5394 0.7828

ACC 0.2862 0.4645 0.5426 0.4615 0.2476 0.3920 0.5973 0.5471 0.3479 0.6799

TABLE 4
Node clustering results.

Datasets Metrics GCN
[7]

GAT
[8]

RGCN
[9]

HAN
[11]

HetGNN
[3]

GTN
[10]

HGT
[12]

HGConv
[13]

ie-HGCN
[14] DHAN

OAG1Y ARI 0.0340 0.0286 0.0308 0.0337 0.0141 0.0350 0.0636 0.0276 0.0451 0.0728

NMI 0.6566 0.6477 0.6469 0.6541 0.6231 0.6652 0.6746 0.6489 0.6479 0.6764

OAG2Y ARI 0.0156 0.0194 0.0109 0.0225 0.0120 0.0176 0.0134 0.0313 0.0090 0.0474

NMI 0.6577 0.6646 0.6571 0.6666 0.6302 0.6773 0.6740 0.6678 0.4758 0.7012

OAG10Y ARI 0.0152 0.0286 0.0124 0.0079 0.0135 0.0369 0.0318 0.0337 0.0018 0.0370

NMI 0.6422 0.6477 0.6510 0.6449 0.6207 0.6706 0.6727 0.6744 0.6491 0.6818

or hierarchical architecture will lead to performance decreasing.
Specifically, the proposed model DHAN significantly outperforms
DHAN w/o dual operation, which confirms the benefits of the
dual mechanism. Thus, we highlight the importance of designing
a specific model architecture on the bi-typed graphs rather than
a general heterogeneous graph model. Compared with DHAN
w/o global attention and DHAN w/o hierarchical architec-
ture, we can find that fusing both global information and local
information makes a great contribution to the performance of
DHAN. Moreover, we could also observe that DHAN w/o global
attention always performs better than DHAN w/o hierarchical
architecture, which is in line with the fact that DHAN w/o

hierarchical architecture is also a simplified version of DHAN
w/o global attention removing local attention mechanism.

4.5 Visualization.

To make a more intuitive comparison, we project the representa-
tions of paper nodes into two-dimensional space by t-SNE [59].
The node representations are learned on OAG1Y based on PF L1
tasks. We randomly choose two fields that no papers belongs to
both. The color indicates the publishing field of the papers in
Figure 5. The less mixed areas the better. We can observe that
our model DHAN performs best in visualization as there are more
distinct boundaries and fewer mixed nodes. Besides, we also find
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Fig. 4. The ablation study of our model on OAG1Y.

Fig. 5. Visualization of node representation on OAG1Y. Each point indicates a paper and its color indicates its publication field. Less mixed areas
mean better performance. We can observe that the proposed DHAN outperforms other models.

that those hierarchical heterogeneous models (i.e., HAN and ie-
HGCN), perform better than general heterogeneous graph models
(i.e., HetGNN and GTN).

4.6 Variant Analysis

We conduct variant analysis of DHAN on OAG1Y with four tasks
to show the effectiveness of its architecture. (1) DAHN-RGCN
substitutes the proposed hierarchical attention mechanism with
RGCN and keeps model structure unchanged. (2) Inverted Ar-
chitecture firstly implements inter-type hierarchical aggregation
and then applies intra-type hierarchical aggregation. (3) Parallel
Architecture conducts intra-type and inter-type hierarchical ag-
gregation simultaneously and concatenates the updated represen-
tation of two types of nodes respectively. The results are shown in
Figure 6, from which we can observe that all the variants perform
worse than DHAN. DHAN-RGCN utilizes RGCN rather than
our hierarchical module to aggregate different types of relation
information, which thus leads to a performance decrease. The
proposed DHAN performs better than both Inverted Architecture
and Parallel Architecture, which demonstrates our model struc-
ture is a more efficient architecture (i.e., first conducting intra-
type relation aggregation then implementing inter-type relation
aggregation).

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

NDCG
MRR
NDCG
MRR
NDCG
MRR
NDCG
MRR
ACC

PV
PF
_L
1
PF
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D

DHAN DHAN-RGCN Inverted Paralleled

Fig. 6. Variant analsis of DHAN on OAG1Y.

4.7 Interpretability of the Hierarchical Attention

To demonstrate the interpretability of DHAN, we show the learned
attention scores in Figure 7. The global attention is the learned
weight for different relations, and the average attention is cal-
culated as the average of the sum of global attention score and
heterogeneous attention score of all nodes. Here, we show the
results of PF L2 task and AD task on OAG10Y.

Specifically, we can observe from Figure 7 (a) that the
learned global attention score of relation cite and rev cite
gain more weight than other relations in PF L2 task. This
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is in line with the fact that those papers which are ei-
ther cited by or cite target paper contribute much more than
other related papers to the target paper while performing
paper field tasks. Besides, the “is important author of ” and
“is ordinary author of ” relationships obtain more significant
weight than the “is same venue of ” and “is same field of ” re-
lationships, which is also in line with intuition. Moreover, the
“is important author of ” relationship acquires a bit more con-
siderable weight than “is ordinary author of ”, which confirms
the interpretability of our model again. A similar conclusion on
AD task is shown in 7 (b). However, different from Figure 7
(a), the global attention weight of “is important author of ” is
the largest one among all relations, which denotes that papers
with same important author have much more influence than other
related papers in the author disambiguation task. This is mainly
because that the author disambiguation task cares more about
relations between authors and papers, which is also in line with
our intuition. Above all, we can find that the average attention
score of each relation is significantly different from global atten-
tion weight. Actually, in the PF L2 task, the average attention
score of the cite relation and corresponding standard variance
are 0.3293 and 0.0124. In AD task, the average attention score
of the “is important author of ” relation and the corresponding
standard variance is 0.5682 and 0.0960. The former two facts
demonstrate the necessity of combining both global information
and local information for information aggregation.
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Fig. 7. The presentation of the learned attention scores of DHAN.

4.8 Parameter Analysis

The hyper-parameters play an important role in model perfor-
mance, and one of the most essential hyper-parameters is the
dimension of representations. We conduct parameter analysis in
the PF L2 and AD task on the OAG1Y dataset. The results are
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Fig. 8. Parameter sensitivity of DHAN on PF L2 and AD task with
different dimensions in OAG1Y.

shown in Figure 8, from which we can observe that the proposed
model reaches its best performance when the dimension of output
representation is set as 128. Specifically, the performance first
rises with the dimension increasing and then reaches its optimal
state since the model needs larger dimension to embody rich
information. After that, the performance decreases as a result of
overfitting. Moreover, we conduct analysis of the layer number
in the AD task on the OAG1Y dataset. We find that the proposed
model performs best with 3 layers of intra-type attention-based
encoder and 4 layers of inter-type attention-based encoder. The
result demonstrates that the proposed model need several layers
to aggregate high-order neighbors’ information, while too many
layers lead to performance degeneration, which is mainly because
of over-smoothing.

5 CONCLUSION AND FUTURE WORK

In this paper, we focus on how to learn node efficient represen-
tations on bi-typed multi-relational heterogeneous graph. To this
end, we propose a novel Dual Hierarchical Attention Networks
(DHAN). To the best of our knowledge, we are the first attempt
to deal with this task. Specifically, DHAN contains intra-type
and inter-type attention-based encoders which enables DHAN
to sufficiently leverage not only the node intra-type neighboring
information but also the inter-type neighboring information in
BMHG. Moreover, to sufficiently model node multi-relational
information in BMHG, we adopt a newly proposed hierarchical
mechanism, which takes both global and local importance of
relationships into consideration. By doing so, the proposed dual
hierarchical attention operations enable our model to fully capture
the complex structures of the BMHGs. We conduct extensive
experiments on various tasks against the state-of-the-arts, which
sufficiently confirms the capability of DHAN in learning node
comprehensive representations in BMHGs. Interesting future work
directions include generalizing DHAN to other BMHG-based
applications.
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